or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q)
}.
-
-definition ORelation_setoid : OAlgebra → OAlgebra → setoid1.
+definition ORelation_setoid : OAlgebra → OAlgebra → setoid2.
intros (P Q);
constructor 1;
[ apply (ORelation P Q);
| apply (.= (e3 a)); apply e7;]]]
qed.
-definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
+definition or_f_minus_star:
+ ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q).
intros; constructor 1;
[ apply or_f_minus_star_;
- | intros; cases H; assumption]
+ | intros; cases e; assumption]
qed.
-definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
+definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q).
intros; constructor 1;
[ apply or_f_;
- | intros; cases H; assumption]
+ | intros; cases e; assumption]
qed.
coercion or_f.
-definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
+definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P).
intros; constructor 1;
[ apply or_f_minus_;
- | intros; cases H; assumption]
+ | intros; cases e; assumption]
qed.
-definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
+definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P).
intros; constructor 1;
[ apply or_f_star_;
- | intros; cases H; assumption]
+ | intros; cases e; assumption]
qed.
-lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q.
-intros; apply (or_f ?? c);
+lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q).
+intros; apply (or_f ?? t);
qed.
-coercion arrows1_OF_ORelation_setoid nocomposites.
+coercion arrows1_OF_ORelation_setoid.
lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q.
-intros; apply (or_f ?? c);
+intros; apply (or_f ?? t);
qed.
coercion umorphism_OF_ORelation_setoid.
lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C.
-intros; apply ((fun_1 ?? c) t);
+intros; apply ((fun1 ?? t) t1);
qed.
coercion uncurry_arrows 1.
-lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed.
-coercion hint3 nocomposites.
+lemma hint6 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply t;qed.
+coercion hint6.
(*
lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed.
notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
-interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r).
-interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r).
-interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r).
+interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 __ (or_f_minus_star _ _) r).
+interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 __ (or_f_minus _ _) r).
+interpretation "o-relation f*" 'OR_f_star r = (fun12 __ (or_f_star _ _) r).
definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q.
(F p ≤ q) = (p ≤ F* q).