r=r' → r⎻ = r'⎻.
#P; #Q; #a; #a'; #e; #x; #x'; #Hx; napply (.= †Hx);
napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_minus_
- [ napply e | napply e^-1]
+ [ napply e | napply (e^-1)]
nqed.
ndefinition or_f_minus_morphism1: ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q)
r=r' → r* = r'*.
#P; #Q; #a; #a'; #e; #x; #x'; #Hx; napply (.= †Hx);
napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_star_
- [ napply e | napply e^-1]
+ [ napply e | napply (e^-1)]
nqed.
ndefinition or_f_star_morphism1: ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q)
r=r' → r⎻* = r'⎻*.
#P; #Q; #a; #a'; #e; #x; #x'; #Hx; napply (.= †Hx);
napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_minus_star_
- [ napply e | napply e^-1]
+ [ napply e | napply (e^-1)]
nqed.
ndefinition or_f_minus_star_morphism1: