--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/list/".
+include "logic/equality.ma".
+include "higher_order_defs/functions.ma".
+
+interpretation "leibnitz's equality" 'eq x y =
+ (cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y).
+
+notation "hvbox(hd break :: tl)"
+ right associative with precedence 46
+ for @{'cons $hd $tl}.
+
+notation "[ list0 x sep ; ]"
+ non associative with precedence 90
+ for ${fold right @'nil rec acc @{'cons $x $acc}}.
+
+notation "hvbox(l1 break @ l2)"
+ right associative with precedence 47
+ for @{'append $l1 $l2 }.
+
+inductive list (A:Set) : Set \def
+ | nil: list A
+ | cons: A \to list A \to list A.
+
+interpretation "nil" 'nil = (cic:/matita/list/list.ind#xpointer(1/1/1) _).
+interpretation "cons" 'cons hd tl =
+ (cic:/matita/list/list.ind#xpointer(1/1/2) _ hd tl).
+
+theorem nil_cons:
+ \forall A:Set.\forall l:list A.\forall a:A.
+ a::l \neq [].
+ intros.
+ unfold; intros.
+ discriminate H.
+qed.
+
+let rec id_list A (l: list A) on l \def
+ match l with
+ [ nil \Rightarrow []
+ | (cons hd tl) \Rightarrow hd :: id_list A tl ].
+
+let rec append A (l1: list A) l2 on l1 \def
+ match l1 with
+ [ nil \Rightarrow l2
+ | (cons hd tl) \Rightarrow hd :: append A tl l2 ].
+
+interpretation "append" 'append l1 l2 = (cic:/matita/list/append.con _ l1 l2).
+
+theorem append_nil: \forall A:Set.\forall l:list A.l @ [] = l.
+ intros.
+ elim l.
+ reflexivity.
+ simplify.
+ rewrite > H.
+ reflexivity.
+qed.
+
+theorem associative_append: \forall A:Set.associative (list A) (append A).
+ intros; unfold; intros.
+ elim x.
+ simplify; reflexivity.
+ simplify.
+ rewrite > H.
+ reflexivity.
+qed.
+
+theorem cons_append_commute:
+ \forall A:Set.\forall l1,l2:list A.\forall a:A.
+ a :: (l1 @ l2) = (a :: l1) @ l2.
+ intros.
+ reflexivity.
+qed.
+
+(*
+theorem nil_append_nil_both:
+ \forall A:Set.\forall l1,l2:list A.
+ l1 @ l2 = [] \to l1 = [] \land l2 = [].
+*)
+
+(*
+include "nat/nat.ma".
+
+theorem test_notation: [O; S O; S (S O)] = O :: S O :: S (S O) :: [].
+reflexivity.
+qed.
+
+theorem test_append: [O;O;O;O;O;O] = [O;O;O] @ [O;O] @ [O].
+simplify.
+reflexivity.
+qed.
+*)