--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "static_2/relocation/lex.ma".
+include "basic_2/notation/relations/pconveta_4.ma".
+include "basic_2/rt_conversion/cpce.ma".
+
+(* PARALLEL ETA-CONVERSION FOR FULL LOCAL ENVIRONMENTS **********************)
+
+definition lpce (h) (G): relation lenv ≝ lex (cpce h G).
+
+interpretation
+ "parallel eta-conversion on all entries (local environment)"
+ 'PConvEta h G L1 L2 = (lpce h G L1 L2).
+
+(* Advanced properties ******************************************************)
+
+lemma lpce_pair (h) (G):
+ ∀K1,K2,V1,V2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 → ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 →
+ ∀I. ⦃G,K1.ⓑ{I}V1⦄ ⊢ ⬌η[h] K2.ⓑ{I}V2.
+/2 width=1 by lex_pair/ qed.
+
+(* Basic inversion lemmas ***************************************************)
+
+lemma lpce_inv_atom_sn (h) (G):
+ ∀L2. ⦃G,⋆⦄ ⊢ ⬌η[h] L2 → L2 = ⋆.
+/2 width=2 by lex_inv_atom_sn/ qed-.
+
+lemma lpce_inv_atom_dx (h) (G):
+ ∀L1. ⦃G,L1⦄ ⊢ ⬌η[h] ⋆ → L1 = ⋆.
+/2 width=2 by lex_inv_atom_dx/ qed-.
+
+(* Advanced inversion lemmas ************************************************)
+
+lemma lpce_inv_unit_sn (h) (G):
+ ∀I,L2,K1. ⦃G,K1.ⓤ{I}⦄ ⊢ ⬌η[h] L2 →
+ ∃∃K2. ⦃G, K1⦄ ⊢ ⬌η[h] K2 & L2 = K2.ⓤ{I}.
+/2 width=1 by lex_inv_unit_sn/ qed-.
+
+lemma lpce_inv_pair_sn (h) (G):
+ ∀I,L2,K1,V1. ⦃G,K1.ⓑ{I}V1⦄ ⊢ ⬌η[h] L2 →
+ ∃∃K2,V2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 & L2 = K2.ⓑ{I}V2.
+/2 width=1 by lex_inv_pair_sn/ qed-.
+
+lemma lpce_inv_unit_dx (h) (G):
+ ∀I,L1,K2. ⦃G,L1⦄ ⊢ ⬌η[h] K2.ⓤ{I} →
+ ∃∃K1. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & L1 = K1.ⓤ{I}.
+/2 width=1 by lex_inv_unit_dx/ qed-.
+
+lemma lpce_inv_pair_dx (h) (G):
+ ∀I,L1,K2,V2. ⦃G,L1⦄ ⊢ ⬌η[h] K2.ⓑ{I}V2 →
+ ∃∃K1,V1. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 & L1 = K1.ⓑ{I}V1.
+/2 width=1 by lex_inv_pair_dx/ qed-.
+
+lemma lpce_inv_pair (h) (G):
+ ∀I1,I2,L1,L2,V1,V2. ⦃G,L1.ⓑ{I1}V1⦄ ⊢ ⬌η[h] L2.ⓑ{I2}V2 →
+ ∧∧ ⦃G,L1⦄ ⊢ ⬌η[h] L2 & ⦃G,L1⦄ ⊢ V1 ⬌η[h] V2 & I1 = I2.
+/2 width=1 by lex_inv_pair/ qed-.