| apply (. (#‡(e i)\sup -1)); apply f]]
qed.
-definition big_union:
+axiom (*definition*) big_union:
∀A:SET.∀I:SET.unary_morphism2 (setoid1_of_setoid I ⇒ Ω \sup A) (setoid2_of_setoid1 (Ω \sup A)).
- intros; constructor 1;
- [ intro; whd; whd in I;
+(* intros; constructor 1;
+ [ intro; whd; whd in A; whd in I;
apply ({x | ∃i:I. x ∈ t i});
simplify; intros; split; intros; cases H; clear H; exists; [1,3:apply w]
[ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ]
| intros; split; intros 2; simplify in f ⊢ %; cases f; clear f; exists; [1,3:apply w]
[ apply (. (#‡(e w))); apply x;
| apply (. (#‡(e w)\sup -1)); apply x]]
-qed.
+qed.*)
(* incluso prima non funziona piu' nulla *)
include "o-algebra.ma".
axiom daemon: False.
-definition SUBSETS: SET → OAlgebra.
+definition SUBSETS: objs1 SET → OAlgebra.
intro A; constructor 1;
[ apply (Ω \sup A);
| apply subseteq;
| intros; apply transitive_subseteq_operator; [2: apply f; | skip | assumption]
| intros; cases f; exists [apply w] assumption
| intros; intros 2; apply (f ? f1 i);
- | intros; intros 2; apply f; exists; [apply i] assumption;
+ |(* intros; intros 2; apply f; exists; [apply i] assumption;*)
| intros 3; cases f;
| intros 3; constructor 1;
| intros; cases f; exists; [apply w]
[ assumption
| whd; intros; cases i; simplify; assumption]
- | intros; split; intro;
+ |(* intros; split; intro;
[ cases f; cases x1; exists [apply w1] exists [apply w] assumption;
- | cases H; cases x; exists; [apply w1] [assumption | exists; [apply w] assumption]]
+ | cases H; cases x; exists; [apply w1] [assumption | exists; [apply w] assumption]]*)
| intros; intros 2; cases (H (singleton ? a) ?);
[ exists; [apply a] [assumption | change with (a = a); apply refl1;]
| change in x1 with (a = w); change with (mem A a q); apply (. (x1 \sup -1‡#));
assumption]]
+cases daemon;
qed.
\ No newline at end of file