[ mk_magma_morphism _ p ⇒ p ].
ndefinition sub_magma ≝
- λA.λM1,M2: magma A. ∀x. x ∈ mcarr ? M1 → x ∈ mcarr ? M2.
+ λA.λM1,M2: magma A. mcarr ? M1 ⊆ mcarr ? M2.
ndefinition image: ∀A,B. (A → B) → Ω \sup A → Ω \sup B ≝
λA,B,f,Sa. {y | ∃x. x ∈ Sa ∧ f x = y}.
#A; #B; #Ma; #Mb; #f;
napply (mk_magma ???)
[ napply (image ?? (mmcarr ?? (mmmcarr ???? f)) (mcarr ? Ma))
- | #x; #y; *; #x0; #Hx0; *; #y0; #Hy0; nwhd;
+ | #x; #y; nwhd in ⊢ (% → % → ?); *; #x0; *; #Hx0; #Hx1; *; #y0; *; #Hy0; #Hy1; nwhd;
napply (ex_intro ????)
[ napply (op ? x0 y0)
- | napply (conj ????);
- nelim daemon ]##]
+ | napply (conj ????)
+ [ napply (op_closed ??????); nassumption
+ | nelim daemon ]##]
nqed.
\ No newline at end of file