<term>Pre-conditions:</term>
<listitem>
<para>the conclusion of the current sequent must be
- an inductive type or the application of an inductive type.</para>
+ an inductive type or the application of an inductive type with
+ at least <command>n</command> constructors.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Pre-conditions:</term>
<listitem>
<para>the conclusion of the current sequent must be
- an inductive type or the application of an inductive type.</para>
+ an inductive type or the application of an inductive type
+ with at least one constructor.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Pre-conditions:</term>
<listitem>
<para>the conclusion of the current sequent must be
- an inductive type or the application of an inductive type.</para>
+ an inductive type or the application of an inductive type
+ with at least one constructor.</para>
</listitem>
</varlistentry>
<varlistentry>
<sect1 id="tac_reflexivity">
<title>reflexivity</title>
<titleabbrev>reflexivity</titleabbrev>
- <para>The tactic <command>reflexivity</command> </para>
+ <para><userinput>reflexivity </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current sequent must be
+ <command>t=t</command> for some term <command>t</command></para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it closes the current sequent by reflexivity
+ of equality.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_replace">
<title>replace <pattern> with <term></title>
- <titleabbrev>replace</titleabbrev>
- <para>The tactic <command>replace</command> </para>
+ <titleabbrev>change</titleabbrev>
+ <para><userinput>change patt with t</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it replaces the subterms of the current sequent matched by
+ <command>patt</command> with the new term <command>t</command>.
+ For each subterm matched by the pattern, <command>t</command> is
+ disambiguated in the context of the subterm.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>for each matched term <command>t'</command> it opens
+ a new sequent to prove whose conclusion is
+ <command>t'=t</command>.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_rewrite">
<title>rewrite {<|>} <term> <pattern></title>
<titleabbrev>rewrite</titleabbrev>
- <para>The tactic <command>rewrite</command> </para>
+ <para><userinput>rewrite dir p patt</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para><command>p</command> must be the proof of an equality,
+ possibly under some hypotheses.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it looks in every term matched by <command>patt</command>
+ for all the occurrences of the
+ left hand side of the equality that <command>p</command> proves
+ (resp. the right hand side if <command>dir</command> is
+ <command><</command>). Every occurence found is replaced with
+ the opposite side of the equality.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens one new sequent for each hypothesis of the
+ equality proved by <command>p</command> that is not closed
+ by unification.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_right">
<title>right</title>
<sect1 id="tac_ring">
<title>ring</title>
<titleabbrev>ring</titleabbrev>
- <para>The tactic <command>ring</command> </para>
+ <para><userinput>ring </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current sequent must be an
+ equality over Coq's real numbers that can be proved using
+ the ring properties of the real numbers only.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it closes the current sequent veryfying the equality by
+ means of computation (i.e. this is a reflexive tactic, implemented
+ exploiting the "two level reasoning" technique).</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_simplify">
<title>simplify <pattern></title>
<sect1 id="tac_split">
<title>split</title>
<titleabbrev>split</titleabbrev>
- <para>The tactic <command>split</command> </para>
+ <para><userinput>split </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current sequent must be
+ an inductive type or the application of an inductive type with
+ at least one constructor.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>equivalent to <command>constructor 1</command>.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent for each premise of the first
+ constructor of the inductive type that is the conclusion of the
+ current sequent. For more details, see the <command>constructor</command> tactic.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_symmetry">
<title>symmetry</title>
<titleabbrev>symmetry</titleabbrev>
<para>The tactic <command>symmetry</command> </para>
+ <para><userinput>symmetry </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current proof must be an equality.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it swaps the two sides of the equalityusing the symmetric
+ property.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_transitivity">
<title>transitivity <term></title>
<titleabbrev>transitivity</titleabbrev>
- <para>The tactic <command>transitivity</command> </para>
+ <para><userinput>transitivity t</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current proof must be an equality.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it closes the current sequent by transitivity of the equality.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens two new sequents <command>l=t</command> and
+ <command>t=r</command> where <command>l</command> and <command>r</command> are the left and right hand side of the equality in the conclusion of
+the current sequent to prove.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_unfold">
<title>unfold [<term>] <pattern></title>
<titleabbrev>unfold</titleabbrev>
- <para>The tactic <command>unfold</command> </para>
+ <para><userinput>unfold t patt</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it finds all the occurrences of <command>t</command>
+ (possibly applied to arguments) in the subterms matched by
+ <command>patt</command>. Then it δ-expands each occurrence,
+ also performing β-reduction of the obtained term. If
+ <command>t</command> is omitted it defaults to each
+ subterm matched by <command>patt</command>.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_whd">
<title>whd <pattern></title>