]> matita.cs.unibo.it Git - helm.git/commitdiff
commit by user lroversi
authormatitaweb <claudio.sacerdoticoen@unibo.it>
Mon, 17 Oct 2011 07:13:18 +0000 (07:13 +0000)
committermatitaweb <claudio.sacerdoticoen@unibo.it>
Mon, 17 Oct 2011 07:13:18 +0000 (07:13 +0000)
weblib/tutorial/chapter1.ma

index 8e27cf450e7441849c2d3ada59b8692d5f27acc8..6598df5c14a13dede5438c154a5f2b398e853a7f 100644 (file)
@@ -23,7 +23,7 @@ computational mechanism based on the declaration of inductive types.
 Let us start this tutorial with a simple example based on the following well 
 known problem.
 
-\ 5h2 class="section"\ 6The goat, the wolf and the cabbage\ 5/h2\ 6\ 5div class="paragraph"\ 6\ 5/div\ 6A farmer need to transfer a goat, a wolf and a cabbage across a river, but there
+\ 5h2 class="section"\ 6The goat, the wolf and the cabbage\ 5/h2\ 6A farmer need to transfer a goat, a wolf and a cabbage across a river, but there
 is only one place available on his boat. Furthermore, the goat will eat the 
 cabbage if they are left alone on the same bank, and similarly the wolf will eat
 the goat. The problem consists in bringing all three items safely across the 
@@ -137,7 +137,7 @@ them in turn, in a way that will be described at the end of this section.
 (* Instead of working with functions, it is sometimes convenient to work with
 predicates. For instance, instead of defining a function computing the opposite 
 bank, we could declare a predicate stating when two banks are opposite to each 
-other. Only two cases are possible, leading naturally two the following 
+other. Only two cases are possible, leading naturally to the following 
 definition:
 *)
 
@@ -210,7 +210,12 @@ definition end ≝ \ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_s
 of a relation (a binary predicate) over states. *)
 
 inductive move : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
-| move_goat: ∀g,g1,w,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g1 w c g1) 
+| move_goat: ∀g,g1,w,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g1 w c g1)
+         (* Every time g and g1 are two opposite banks, it is legal to put
+                the state "\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g", which says that goat and boat are on the same bank g,
+            and the state "\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g1 w c g1", which says that goat and boat are on the same bank g1
+            in the relation "move" because, for example, moving the goat from bank g to bank g1 requires
+            moving the boat as well. *) 
 | move_wolf: ∀g,w,w1,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 w w1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c w) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w1 c w1)
 | move_cabbage: ∀g,w,c,c1.\ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 c c1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c c) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c1 c1)
 | move_boat: ∀g,w,c,b,b1. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 b b1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b1).
@@ -342,4 +347,4 @@ us complete the proof in this, very readable way. *)
 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,1,0)"\ 6move_goat\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 … )) /2/
 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,3,0)"\ 6move_cabbage\ 5/a\ 6 ?? \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 … )) /2/
 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,4,0)"\ 6move_boat\ 5/a\ 6 ??? \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 … )) /2/
-@\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,1,0)"\ 6one\ 5/a\ 6 /2/ qed.
+@\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,1,0)"\ 6one\ 5/a\ 6 /2/ qed.
\ No newline at end of file