include "sandwich.ma".
include "property_exhaustivity.ma".
-le x_i e y_i stanno o no nel segmento?
-
+lemma foo:
+ ∀C:ordered_set.
+ ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
+ ∀x:C.∀p:a order_converges x.
+ ∀j.l ≤ (match p with [ex_introT xi _ ⇒ xi] j).
+intros; cases p; simplify; cases H1; clear H1; cases H2; clear H2;
+cases (H3 j); cases H1; clear H3 H1; clear H4 H6; cases H5; clear H5;
+cases H2; clear H2; intro; cases (H5 ? H2);
+cases (H (w2+j)); apply (H8 H6);
+qed.
+
+
(* Theorem 3.10 *)
theorem lebesgue:
∀C:ordered_uniform_space.
intros; cases H2 (xi H4); cases H4 (yi H5); cases H5; clear H4 H5;
cases H3; cases H5; cases H4; clear H3 H4 H5 H2;
split;
-[2: intro h; cases (H l u (λn:nat.sig_in ?? (a n) (H1 n)) (sig_in ?? x h));
+[2: intro h;
+ cases (H l u (λn:nat.sig_in ?? (a n) (H1 n)) (sig_in ?? x h));
(* Theorem 3.9 *)
apply (trans_increasing ?? H4); intro; whd in H12;
apply (not_le_Sn_n i); apply (transitive_le ??? H12 H5)]
clear H10; intros (p q r); change with (w p 〈a (m q),a (m r)〉);
-generalize in match (refl_eq nat (m p));
+generalize in match (refl_eq nat (m p));
+(*
+intro E; cases p in E : (? ? ? ?);
+*)
generalize in match (m p) in ⊢ (? ? ? % → %); intro X; cases X (w1 H15); clear X;
intros (H16); simplify in H16:(? ? ? %); destruct H16;
apply H15; [3: apply le_n]