| Terms.Node l -> "(" ^ String.concat " " (List.map ppfot l) ^ ")"
;;
- let mk_predicate hole_type amount ft p vl =
+ let mk_predicate hole_type amount ft p1 vl =
let rec aux t p =
match p with
| [] -> NCic.Rel 1
| Terms.Var _ ->
prerr_endline ("term: " ^ ppfot ft);
prerr_endline ("path: " ^ String.concat ","
- (List.map string_of_int p));
+ (List.map string_of_int p1));
assert false
| Terms.Node l ->
let l =
in
NCic.Appl l
in
- NCic.Lambda("x", hole_type, aux ft (List.rev p))
+ NCic.Lambda("x", hole_type, aux ft (List.rev p1))
;;
let mk_proof (bag : NCic.term Terms.bag) mp steps =
NCic.Prod ("x"^string_of_int i, NCic.Implicit `Type, t))
t vl
in
+ let get_literal id =
+ let _, lit, vl, proof = Terms.M.find id bag in
+ let lit =match lit with
+ | Terms.Predicate t -> assert false
+ | Terms.Equation (l,r,ty,_) ->
+ Terms.Node [ Terms.Leaf eqP; ty; l; r]
+ in
+ lit, vl, proof
+ in
let rec aux ongoal seen = function
| [] -> NCic.Rel 1
| id :: tl ->
let amount = List.length seen in
- let _, lit, vl, proof = Terms.M.find id bag in
- let lit =
- match lit with
- | Terms.Predicate t -> assert false
- | Terms.Equation (l,r,ty,_) ->
- Terms.Node [ Terms.Leaf eqP; ty; l; r]
- in
+ let lit,vl,proof = get_literal id in
if not ongoal && id = mp then
- (assert (vl = []);
+ ((*prerr_endline ("Reached meeting point, id=" ^ (string_of_int id));*)
+ assert (vl = []);
NCic.LetIn ("clause_" ^ string_of_int id,
extract amount vl lit,
(NCic.Appl [eq_refl;NCic.Implicit `Type;NCic.Implicit `Term]),
aux true ((id,([],lit))::seen) (id::tl)))
else
match proof with
- | Terms.Exact _ when tl=[] -> aux ongoal seen tl
+ | Terms.Exact _ when tl=[] ->
+ (* prerr_endline ("Exact (tl=[]) for " ^ (string_of_int id));*)
+ aux ongoal seen tl
| Terms.Step _ when tl=[] -> assert false
- | Terms.Exact ft ->
+ | Terms.Exact ft ->
+ (* prerr_endline ("Exact for " ^ (string_of_int id));*)
NCic.LetIn ("clause_" ^ string_of_int id,
close_with_forall vl (extract amount vl lit),
close_with_lambdas vl (extract amount vl ft),
((id,(List.map (fun x -> Terms.Var x) vl,lit))::seen) tl)
| Terms.Step (_, id1, id2, dir, pos, subst) ->
let id, id1 = if ongoal then id1,id else id,id1 in
+ let lit,vl,_ = get_literal id in
let proof_of_id id =
let vars = List.rev (vars_of id seen) in
let args = List.map (Subst.apply_subst subst) vars in
let args = List.map (extract amount vl) args in
- NCic.Appl (NCic.Rel (List.length vl + position id seen) :: args)
+ let rel_for_id = NCic.Rel (List.length vl + position id seen) in
+ if args = [] then rel_for_id
+ else NCic.Appl (rel_for_id::args)
in
let p_id1 = proof_of_id id1 in
let p_id2 = proof_of_id id2 in
extract amount vl (Subst.apply_subst subst r)
| _ -> assert false
in
+ (*prerr_endline "mk_predicate :";
+ if ongoal then prerr_endline "ongoal=true"
+ else prerr_endline "ongoal=false";
+ prerr_endline ("id=" ^ string_of_int id);
+ prerr_endline ("id1=" ^ string_of_int id1);
+ prerr_endline ("id2=" ^ string_of_int id2);
+ prerr_endline ("Positions :" ^
+ (String.concat ", "
+ (List.map string_of_int pos)));*)
mk_predicate
id2_ty amount (Subst.apply_subst subst id1_ty) pos vl,
id2_ty,
l,r,eq_ind
in
NCic.LetIn ("clause_" ^ string_of_int id,
- close_with_forall vl (extract amount vl lit),
+ (*close_with_forall vl (extract amount vl lit)*) NCic.Implicit `Type,
close_with_lambdas vl
(NCic.Appl [ eq_ind ; hole_type; l; pred; p_id1; r; p_id2 ]),
aux ongoal
let nparamod rdb metasenv subst context t table =
let nb_iter = ref 200 in
- prerr_endline "========================================";
let module C = struct
let metasenv = metasenv
let subst = subst
bag, maxvar, g_current::g_actives,
(PassiveSet.union new_goals g_passives)
in
- prerr_endline
+ debug
(Printf.sprintf "Number of active goals : %d"
(List.length g_actives));
- prerr_endline
+ debug
(Printf.sprintf "Number of passive goals : %d"
(PassiveSet.cardinal g_passives));
| None -> assert false
| Some (current, passives) ->
debug ("Selected fact : " ^ Pp.pp_unit_clause current);
- match Sup.keep_simplified current actives bag with
+ match Sup.keep_simplified current actives bag maxvar with
(* match Sup.one_pass_simplification current actives bag with *)
| None -> aux_simplify passives
| Some x -> x,passives
PassiveSet.union new_clauses passives,
PassiveSet.union new_goals g_passives
in
- prerr_endline
+ debug
(Printf.sprintf "Number of actives : %d" (List.length (fst actives)));
- prerr_endline
+ debug
(Printf.sprintf "Number of passives : %d"
(PassiveSet.cardinal passives));
given_clause bag maxvar actives passives g_actives g_passives
in
let esteps =
S.topological_sort (C.elements (snd (all i)))
- (fun i -> C.elements (snd (all i)))
+ (fun i -> C.elements (C.union (snd (all i)) (fst (all i)) ))
in
let gsteps =
S.topological_sort (C.elements (fst (all i)))
(fun i -> C.elements (fst (all i)))
in
let gsteps = List.rev gsteps in
- esteps@gsteps
+ esteps@(i::gsteps)
in
- prerr_endline "YES!";
- prerr_endline "Proof:";
- List.iter (fun x ->
- prerr_endline (Pp.pp_unit_clause (Terms.M.find x bag))) l;
+ debug "YES!";
+ debug ("Meeting point : " ^ (string_of_int i));
+ debug "Proof:";
+ (*List.iter (fun x -> prerr_endline (string_of_int x);
+ prerr_endline (Pp.pp_unit_clause (Terms.M.find x bag))) l; *)
let proofterm = B.mk_proof bag i l in
- prerr_endline
- (NCicPp.ppterm ~metasenv:C.metasenv ~subst:C.subst ~context:C.context
- proofterm);
- let _metasenv, _subst, _proofterm, _prooftype =
- NCicRefiner.typeof rdb C.metasenv C.subst C.context proofterm None
+ prerr_endline (NCicPp.ppterm ~metasenv:C.metasenv
+ ~subst:C.subst ~context:C.context proofterm);
+ let metasenv, subst, proofterm, _prooftype =
+ NCicRefiner.typeof
+ (rdb#set_coerc_db NCicCoercion.empty_db)
+ C.metasenv C.subst C.context proofterm None
in
- prerr_endline "REFINED!";
- ()
- | Failure _ -> prerr_endline "FAILURE";
+ proofterm, metasenv, subst
+ | Failure _ -> prerr_endline "FAILURE"; assert false
;;
| _ -> false
;;
- let is_subsumed ~unify (id, lit, vl, _) table =
+ let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir =
+ let maxvar, vl, relocsubst = Utils.relocate maxvar vl in
+ let subst = Subst.concat relocsubst subst in
+ match build_clause bag filter rule t subst vl id id2 pos dir with
+ | Some (bag, c) -> Some ((bag, maxvar), c)
+ | None -> None
+ ;;
+
+
+ let fold_build_new_clause bag maxvar id rule filter res =
+ let (bag, maxvar), res =
+ HExtlib.filter_map_acc
+ (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) ->
+ build_new_clause bag maxvar filter rule t subst vl id id2 pos dir)
+ (bag, maxvar) res
+ in
+ bag, maxvar, res
+ ;;
+
+ let is_subsumed ~unify bag maxvar (id, lit, vl, _) table =
match lit with
| Terms.Predicate _ -> assert false
| Terms.Equation (l,r,ty,_) ->
let lcands = retrieve table l in
let rcands = retrieve table r in
let f b c =
- let dir, l, r, vl =
+ let id, dir, l, r, vl =
match c with
- | (d, (_,Terms.Equation (l,r,ty,_),vl,_))-> d, l, r, vl
+ | (d, (id,Terms.Equation (l,r,ty,_),vl,_))-> id, d, l, r, vl
|_ -> assert false
in
- let l, r = if (dir = Terms.Left2Right) = b then l,r else r,l in
- Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl
+ let reverse = (dir = Terms.Left2Right) = b in
+ let l, r, proof_rewrite_dir = if reverse then l,r,Terms.Left2Right
+ else r,l, Terms.Right2Left in
+ (id,proof_rewrite_dir,Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl)
in
let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in
let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in
let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in
let locked_vars = if unify then [] else vl in
- List.exists
- (fun (c, vl1) ->
- try ignore(Unif.unification (vl@vl1) locked_vars c t); true
- with FoUnif.UnificationFailure _ -> false)
- (cands1 @ cands2)
+ let rec aux = function
+ | [] -> None
+ | (id2,dir,c,vl1)::tl ->
+ try
+ let subst,vl1 = Unif.unification (vl@vl1) locked_vars c t in
+ let id_t = Terms.Node [ Terms.Leaf B.eqP; ty; r; r ] in
+ build_new_clause bag maxvar (fun _ -> true)
+ Terms.Superposition id_t subst [] id id2 [2] dir
+ with FoUnif.UnificationFailure _ -> aux tl
+ in
+ aux (cands1 @ cands2)
;;
(* demodulate and check for subsumption *)
- let simplify table bag clause =
+ let simplify table maxvar bag clause =
let bag, clause = demodulate bag clause table in
if is_identity_clause clause then None
else
- if is_subsumed ~unify:false clause table then None
- else Some (bag, clause)
+ match is_subsumed ~unify:false bag maxvar clause table with
+ | None -> Some (bag, clause)
+ | Some _ -> None
;;
- let one_pass_simplification new_clause (alist,atable) bag =
- match simplify atable bag new_clause with
+ let one_pass_simplification new_clause (alist,atable) bag maxvar =
+ match simplify atable maxvar bag new_clause with
| None -> None (* new_clause has been discarded *)
| Some (bag, clause) ->
let ctable = IDX.index_unit_clause IDX.DT.empty clause in
let bag, alist, atable =
List.fold_left
(fun (bag, alist, atable as acc) c ->
- match simplify ctable bag c with
+ match simplify ctable maxvar bag c with
|None -> acc (* an active clause as been discarded *)
|Some (bag, c1) ->
bag, c :: alist, IDX.index_unit_clause atable c)
Some (clause, bag, (alist,atable))
;;
- let simplification_step ~new_cl cl (alist,atable) bag new_clause =
+ let simplification_step ~new_cl cl (alist,atable) bag maxvar new_clause =
let atable1 =
if new_cl then atable else
IDX.index_unit_clause atable cl
(* Simplification of new_clause with : *
* - actives and cl if new_clause is not cl *
* - only actives otherwise *)
- match simplify atable1 bag new_clause with
+ match simplify atable1 maxvar bag new_clause with
| None -> (Some cl, None) (* new_clause has been discarded *)
| Some (bag, clause) ->
(* Simplification of each active clause with clause *
let bag, newa, alist, atable =
List.fold_left
(fun (bag, newa, alist, atable as acc) c ->
- match simplify ctable bag c with
+ match simplify ctable maxvar bag c with
|None -> acc (* an active clause as been discarded *)
|Some (bag, c1) ->
if (c1 == c) then
(Some cl, Some (clause, (alist,atable), newa, bag))
else
(* if new_clause is not cl, we simplify cl with clause *)
- match simplify ctable bag cl with
+ match simplify ctable maxvar bag cl with
| None ->
(* cl has been discarded *)
(None, Some (clause, (alist,atable), newa, bag))
(Some cl1, Some (clause, (alist,atable), newa, bag))
;;
- let keep_simplified cl (alist,atable) bag =
+ let keep_simplified cl (alist,atable) bag maxvar =
let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc =
if new_cl then
- match simplification_step ~new_cl cl (alist,atable) bag cl with
+ match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with
| (None, _) -> assert false
| (Some _, None) -> None
| (Some _, Some (clause, (alist,atable), newa, bag)) ->
| [] -> Some (cl, bag, (alist,atable))
| hd::tl ->
match simplification_step ~new_cl cl
- (alist,atable) bag hd with
+ (alist,atable) bag maxvar hd with
| (None,None) -> assert false
| (Some _,None) ->
keep_simplified_aux ~new_cl cl (alist,atable) bag tl
(* this is like simplify but raises Success *)
let simplify_goal maxvar table bag clause =
let bag, clause = demodulate bag clause table in
- if (is_identity_clause clause) || (is_subsumed ~unify:true clause table)
+ if (is_identity_clause clause)
then raise (Success (bag, maxvar, clause))
- else bag, clause
+ else match is_subsumed ~unify:true bag maxvar clause table with
+ | None -> bag, clause
+ | Some ((bag,maxvar),c) ->
+ debug "Goal subsumed";
+ raise (Success (bag,maxvar,c))
;;
(* =================== inference ===================== *)
(IDX.ClauseSet.elements cands)
;;
- let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir =
- let maxvar, vl, relocsubst = Utils.relocate maxvar vl in
- let subst = Subst.concat relocsubst subst in
- match build_clause bag filter rule t subst vl id id2 pos dir with
- | Some (bag, c) -> Some ((bag, maxvar), c)
- | None -> None
- ;;
-
-
- let fold_build_new_clause bag maxvar id rule filter res =
- let (bag, maxvar), res =
- HExtlib.filter_map_acc
- (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) ->
- build_new_clause bag maxvar filter rule t subst vl id id2 pos dir)
- (bag, maxvar) res
- in
- bag, maxvar, res
- ;;
-
(* Superposes selected equation with equalities in table *)
let superposition_with_table bag maxvar (id,selected,vl,_) table =
match selected with
(fun _ -> true)
(all_positions [3]
(fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ])
- r (superposition table vl))
+ r (superposition table vl))
| Terms.Equation (l,r,ty,Terms.Gt) ->
fold_build_new_clause bag maxvar id Terms.Superposition
(fun _ -> true)
debug "Another superposition";
let new_clauses = new_clauses @ additional_new_clauses in
let bag, new_clauses =
- HExtlib.filter_map_acc (simplify atable) bag new_clauses
+ HExtlib.filter_map_acc (simplify atable maxvar) bag new_clauses
in
debug "Demodulated new clauses";
bag, maxvar, (alist, atable), new_clauses
;;
end
-
-
-