\newcommand{\ISOPEN}{\MATHIT{is\_open}}
\newcommand{\DEEPCLOSE}{\MATHIT{deep\_close}}
\newcommand{\REMOVEGOALS}{\MATHIT{remove\_goals}}
-\newcommand{\GOALS}{\MATHIT{goals}}
+\newcommand{\GOALS}{\MATHIT{open\_goals}}
\newcommand{\BRANCHTAG}{\ensuremath{\mathtt{B}}}
\newcommand{\FOCUSTAG}{\ensuremath{\mathtt{F}}}
\item $\ZEROPOS([g_1;\cdots;g_n]) =
[\langle 0,\OPEN~g_1\rangle;\cdots;\langle 0,\OPEN~g_n\rangle]$
\item $\INITPOS([\langle i_1,s_1\rangle;\cdots;\langle i_n,s_n\rangle]) =
- [\langle 1,\OPEN~s_1\rangle;\cdots;\langle n,\OPEN~s_n\rangle]$
+ [\langle 1,s_1\rangle;\cdots;\langle n,s_n\rangle]$
\item $\ISFRESH(s) =
\left\{
\begin{array}{ll}
that each locator whose goal is in $G$ is marked as closed in $\Gamma$ stack
components and removed from $\tau$ and $\kappa$ components.
\item $\GOALS(S)$: (inutition) return all goals appearing in whatever position
- on a given stack $S$.
+ on a given stack $S$, appearing in an \OPEN{} switch.
\end{itemize}
\paragraph{Invariants}
\in\tau\cup\kappa, \exists g, s = \OPEN~g$ (each locator on the stack in
$\tau$ and $\kappa$ components has an \OPEN~switch).
\item Unless \FOCUS{} is used the stack contains no duplicate goals.
+ \item $\forall~\mathrm{locator}~l\in\Gamma \mbox{(with the exception of the
+ top-level $\Gamma$)}, \ISFRESH(l)$.
\end{itemize}
\subsection{Semantics}
\SEM{\FOCUS{g_1,\dots,g_n}}{S}
& =
- & \langle \xi, \ENTRY{[\OPEN~g_1;\cdots;\OPEN~g_n]}{[]}{[]}{\FOCUSTAG}
+ & \langle \xi, \ENTRY{\ZEROPOS([g_1;\cdots;g_n])}{[]}{[]}{\FOCUSTAG}
::\DEEPCLOSE(S)
\rangle
\\[1ex]