\ 5b\ 6Example\ 5/b\ 6.
Below is the DFA associated with the regular expression (ac+bc)*.
-\ 5img src="acUbc.gif" alt="some_text"/\ 6
+\ 5img src="http://www.cs.unibo.it/~asperti/FIGURES/acUbc.gif" alt="DFA for (ac+bc)"/\ 6
The graphical description of the automaton is the traditional one, with nodes for
states and labelled arcs for transitions. Unreachable states are not shown.
\ 5b\ 6Example\ 5/b\ 6.
Starting form the regular expression (a+ϵ)(b*a + b)b, we obtain the following automaton.
-\ 5img src="automaton.pdf" alt="some_text"/\ 6
+\ 5img src="http://www.cs.unibo.it/~asperti/FIGURES/automaton.gif" alt="DFA for (a+ϵ)(b*a + b)b"/\ 6
Remarkably, this DFA is minimal, testifying the small number of states produced by our
-technique (the pair ofstates $6-8$ and $7-9$ differ for the fact that $6$ and $7$
-are final, while $8$ and $9$ are not).
+technique (the pair ofstates 6-8 and 7-9 differ for the fact that 6 and 7
+are final, while 8 and 9 are not).
*)
-(************************ pit state ***************************)
+(*
+\ 5h2\ 6Move to pit\ 5/h2\ 6.
+
+We conclude this chapter with a few properties of the move opertions in relation
+with the pit state. *).
+
definition pit_pre ≝ λS.λi.〈blank S (|i|), false〉.
+(* The following function compute if a symbol in S occurs in a given
+item i *).
+
let rec occur (S: DeqSet) (i: re S) on i ≝
match i with
[ z ⇒ [ ]
| c e1 e2 ⇒ unique_append ? (occur S e1) (occur S e2)
| k e ⇒ occur S e].
+(* If a symbol a does not occur in i, then move(i,a) gets to the
+pit state. *).
+
lemma not_occur_to_pit: ∀S,a.∀i:pitem S. memb S a (occur S (|i|)) ≠ true →
move S a i = pit_pre S i.
#S #a #i elim i //
]
qed.
+(* We cannot escape form the pit state. *).
+
lemma move_pit: ∀S,a,i. move S a (\fst (pit_pre S i)) = pit_pre S i.
#S #a #i elim i //
[#i1 #i2 #Hind1 #Hind2 >move_cat >Hind1 >Hind2 //
#S #w #i elim w //
qed.
+(* If any character in w does not occur in i, then moves(i,w) gets
+to the pit state. *).
+
lemma to_pit: ∀S,w,e. ¬ sublist S w (occur S (|\fst e|)) →
moves S w e = pit_pre S (\fst e).
#S #w elim w