| lapply (id_neutral_right2 ? (Oconcr o) ? (⊩)) as H;
lapply (id_neutral_left2 ?? (Oform o) (⊩)) as H1;
apply (.= H);
- apply (H1 \sup -1);]
+ apply (H1^-1);]
qed.
lemma Orelation_pair_composition:
apply rule (.= ASSOC);
apply (.= #‡e1);
apply (.= #‡(Ocommute ?? b'));
- apply rule (.= ASSOC \sup -1);
+ apply rule (.= ASSOC^-1);
apply (.= e‡#);
apply rule (.= ASSOC);
- apply (.= #‡(Ocommute ?? b')\sup -1);
- apply rule (ASSOC \sup -1);
+ apply (.= #‡(Ocommute ?? b')^-1);
+ apply rule (ASSOC^-1);
qed.
definition Orelation_pair_composition_morphism:
| intros;
apply sym1;
change in match ((s ∘ r) U) with (s (r U));
- apply (.= (Oreduced : ?)\sup -1);
+ apply (.= (Oreduced : ?)^-1);
[ apply (.= (Oreduced :?)); [ assumption | apply refl1 ]
| apply refl1]
| intros;
apply sym1;
change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U));
- apply (.= (Osaturated : ?)\sup -1);
+ apply (.= (Osaturated : ?)^-1);
[ apply (.= (Osaturated : ?)); [ assumption | apply refl1 ]
| apply refl1]]
qed.