try
let other = if pos = Utils.Left then r else l in
let what' = Subst.apply_subst subst what in
+ let other' = Subst.apply_subst subst other in
let subst', menv', ug' =
- unif_fun metasenv m context what' other ugraph
+ unif_fun metasenv m context what' other' ugraph
in
(match Subst.merge_subst_if_possible subst subst' with
| None -> ok what tl
(* ginve the old [goal], the side that has not changed [posu] and the
* expansion builds a new goal *)
-let build_newgoal context goal posu expansion =
+let build_newgoal context goal posu rule expansion =
let goalproof,_,_,_,_,_ = open_goal goal in
let (t,subst,menv,ug,(eq_found,eq_URI)) = fix_expansion goal posu expansion in
let pos, equality = eq_found in
in
let bo' = (*apply_subst subst*) t in
let name = Cic.Name "x" in
- let newgoalproofstep = (pos,id,subst,Cic.Lambda (name,ty,bo')) in
+ let newgoalproofstep = (rule,pos,id,subst,Cic.Lambda (name,ty,bo')) in
bo, (newgoalproofstep::goalproof)
in
let newmetasenv = (* Inference.filter subst *) menv in
match c with Utils.Gt -> l,r,Utils.Right | _ -> r,l,Utils.Left
in
let expansions, _ = betaexpand_term menv context ugraph table 0 big in
- List.map (build_newgoal context goal possmall) expansions
+ List.map (build_newgoal context goal possmall Equality.SuperpositionLeft) expansions
;;
(** demodulation, when the target is a goal *)
let resright = demodulation_aux menv context ugraph table 0 right in
match resright with
| Some t ->
- let newg = build_newgoal context goal Utils.Left t in
+ let newg =
+ build_newgoal context goal Utils.Left Equality.Demodulation t
+ in
if goal_metaconvertibility_eq goal newg then
false, goal
else
let resleft = demodulation_aux menv context ugraph table 0 left in
match resleft with
| Some t ->
- let newg = build_newgoal context goal Utils.Right t in
+ let newg = build_newgoal context goal Utils.Right Equality.Demodulation t in
if goal_metaconvertibility_eq goal newg then
do_right ()
else