ncoinductive ftfish (A : Ax_pro) (F : Ω^A) : A → CProp[0] ≝
| ftfish : ∀a.
a ∈ F →
- (*(∀i:𝐈 a .∃b. b ∈ 𝐂 a i ∧ ftfish A F b) →*)
(∀b. a ≤ b → ftfish A F b) →
- (∀b. a ≤ b → ∀i:𝐈 b. ∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ ftcover A F x) →
+ (∀b. a ≤ b → ∀i:𝐈 b. ∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ ftfish A F x) →
ftfish A F a.
-ntheorem
-
-interpretation "fish" 'fish a U = (fish ? U a).
+interpretation "fish" 'fish a U = (ftfish ? U a).
alias symbol "I" (instance 6) = "I".
ntheorem ftcoinfinity: ∀A: Ax_pro. ∀F: Ω^A. ∀a. a ⋉ F → (∀i: 𝐈 a. ∃b. b ∈ 𝐂 a i ∧ b ⋉ F).
- #A; #F; #a; *; #b; #H; #H1; #i; @ a; @; //;
- ncases H;
\ No newline at end of file
+ #A; #F; #a; #H; ncases H; #b; #_; #_; #H2; #i; ncases (H2 … i); //;
+ #x; *; *; *; #y; *; #K2; #K3; #_; #K5; @y; @ K2; ncases K5 in K3; /2/.
+nqed.
\ No newline at end of file