\ 5a href="cic:/matita/basics/list/foldr.fix(0,4,1)"\ 6foldr\ 5/a\ 6 T (\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 T) (λx,l0.if (p x) then (x\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l0) else l0) (\ 5a href="cic:/matita/basics/list/list.con(0,1,1)"\ 6nil\ 5/a\ 6 T).
definition compose ≝ λA,B,C.λf:A→B→C.λl1,l2.
- \ 5a href="cic:/matita/basics/list/foldr.fix(0,4,1)"\ 6foldr\ 5/a\ 6 ?? (λi,acc.(\ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 ?? (f i) l2)\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6acc) \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ] l1.
+ \ 5a href="cic:/matita/basics/list/foldr.fix(0,4,1)"\ 6foldr\ 5/a\ 6 ?? (λi,acc.(\ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 ?? (f i) l2)\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6acc) \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ] l1.
lemma filter_true : ∀A,l,a,p. p a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 A p (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 a \ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6: \ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 A p l.