|apply (trans_le ? ? ? H);apply lt_to_le;apply (trans_le ? ? ? H1);
apply le_sqrt_n_n]
qed.
+
+lemma eq_div_div_div_times: \forall a,b,c. O < b \to O < c \to a/b/c = a/(b*c).
+intros.rewrite > (div_mod a (b*c)) in \vdash (? ? % ?)
+ [rewrite > (div_mod (a \mod (b*c)) b)
+ [rewrite < assoc_plus;
+ rewrite > sym_times in ⊢ (? ? (? (? (? (? (? ? %) ?) ?) ?) ?) ?);
+ rewrite < assoc_times in ⊢ (? ? (? (? (? (? % ?) ?) ?) ?) ?);
+ rewrite > sym_times in ⊢ (? ? (? (? (? (? % ?) ?) ?) ?) ?);
+ rewrite > sym_times in ⊢ (? ? (? (? (? (? ? %) ?) ?) ?) ?);
+ rewrite < distr_times_plus;rewrite < sym_times in ⊢ (? ? (? (? (? % ?) ?) ?) ?);
+ rewrite > (div_plus_times b)
+ [rewrite > (div_plus_times c)
+ [reflexivity
+ |apply lt_times_to_lt_div;rewrite > sym_times in \vdash (? ? %);
+ apply lt_mod_m_m;unfold lt;rewrite > times_n_SO;apply le_times;assumption]
+ |apply lt_mod_m_m;assumption]
+ |assumption]
+ |unfold lt;rewrite > times_n_SO;apply le_times;assumption]
+qed.
+
+lemma le_prim_stima: \forall n,b. S O < b \to b < sqrt n \to
+ (prim n) \leq
+ 2*S (log b (pred n))/(log b n) + 2*n*S (log b 2)/(log b n)
+ +2*S (log b (pred (sqrt n)))/(log b n)+ 2*sqrt n*S (log b 2)/(log b n)
+ + 14*n/(log b n * log b n) + 28*n*S (log b 3)/(pred (log b n) * log b n)
+ +4/(log b n) + 6.
+intros;
+cut (O < log b n)
+ [|apply lt_O_log;
+ [apply lt_to_le;apply (trans_le ? ? ? H);apply (trans_le ? (sqrt n))
+ [apply lt_to_le;assumption
+ |apply le_sqrt_n_n;]
+ |apply (trans_le ? (sqrt n))
+ [apply lt_to_le;assumption
+ |apply le_sqrt_n_n]]]
+apply (trans_le ? ((2*S (log b (pred n))+2*n*S (log b 2)
+ +(2*S (log b (pred (sqrt n)))+2*sqrt n*S (log b 2))
+ +(14*n/log b n+28*n*S (log b 3)/pred (log b n))
+ +4)/(log b n)))
+ [apply le_times_to_le_div
+ [assumption
+ |rewrite > sym_times;apply le_prim_log_stima;assumption]
+ |apply (trans_le ? ? ? (le_div_plus_S (2*S (log b (pred n))+2*n*S (log b 2)
++(2*S (log b (pred (sqrt n)))+2*sqrt n*S (log b 2))
++(14*n/log b n+28*n*S (log b 3)/pred (log b n))) 4 (log b n) ?))
+ [assumption
+ |rewrite < plus_n_Sm;apply le_S_S;rewrite > assoc_plus in \vdash (? ? %);
+ rewrite > sym_plus in \vdash (? ? (? ? %));
+ rewrite < assoc_plus in \vdash (? ? %);
+ apply le_plus_l;apply (trans_le ? ? ? (le_div_plus_S (2*S (log b (pred n))+2*n*S (log b 2)
++(2*S (log b (pred (sqrt n)))+2*sqrt n*S (log b 2))) (14*n/log b n+28*n*S (log b 3)/pred (log b n)) (log b n) ?));
+ [assumption
+ |rewrite < plus_n_Sm in \vdash (? ? %);apply le_S_S;
+ change in \vdash (? ? (? ? %)) with (1+3);
+ rewrite < assoc_plus in \vdash (? ? %);
+ rewrite > assoc_plus in ⊢ (? ? (? (? % ?) ?));
+ rewrite > assoc_plus in ⊢ (? ? (? % ?));
+ rewrite > sym_plus in \vdash (? ? %);rewrite < assoc_plus in \vdash (? ? %);
+ rewrite > sym_plus in \vdash (? ? (? % ?));apply le_plus
+ [apply (trans_le ? ? ? (le_div_plus_S (2*S (log b (pred n))+2*n*S (log b 2)) (2*S (log b (pred (sqrt n)))+2*sqrt n*S (log b 2)) (log b n) ?))
+ [assumption
+ |rewrite < plus_n_Sm;apply le_S_S;change in \vdash (? ? (? ? %)) with (1+1);
+ rewrite < assoc_plus in \vdash (? ? %);rewrite > assoc_plus in ⊢ (? ? (? (? % ?) ?));
+ rewrite > assoc_plus in ⊢ (? ? (? % ?));
+ rewrite > sym_plus in \vdash (? ? %);
+ rewrite < assoc_plus in \vdash (? ? %);
+ rewrite > sym_plus in \vdash (? ? (? % ?));
+ apply le_plus
+ [rewrite < plus_n_Sm;rewrite < plus_n_O;apply le_div_plus_S;
+ assumption
+ |rewrite < plus_n_Sm;rewrite < plus_n_O;apply le_div_plus_S;
+ assumption]]
+ |rewrite < plus_n_Sm;rewrite < plus_n_O;apply (trans_le ? ? ? (le_div_plus_S ? ? ? ?));
+ [assumption
+ |apply le_S_S;apply le_plus
+ [rewrite > eq_div_div_div_times;
+ [apply le_n
+ |*:assumption]
+ |rewrite > eq_div_div_div_times
+ [apply le_n
+ |rewrite > minus_n_O in \vdash (? ? (? %));
+ rewrite < eq_minus_S_pred;apply lt_to_lt_O_minus;
+ apply (trans_le ? (log b (sqrt n * sqrt n)))
+ [elim daemon;
+ |apply le_log;
+ [assumption
+ |elim daemon]]
+ |assumption]]]]]]]
+qed.
+
+
(*intros;apply lt_to_le;lapply (lt_div_S (((S (S (S (S O))))* log b (pred i)) + (S (S (S (S (S O)))))) i)
[apply (trans_le ? ? ? Hletin);apply le_times_l;apply le_S_S;