alias nat /Coq/Init/Datatypes/nat.ind#1/1
-alias eq /Coq/Init/Logic/Equality/eq.ind#1/1
-alias eq_ind /Coq/Init/Logic/Equality/eq_ind.con
+alias eq /Coq/Init/Logic/eq.ind#1/1
+alias eq_ind /Coq/Init/Logic/eq_ind.con
alias eqT /Coq/Init/Logic_Type/eqT.ind#1/1
alias O /Coq/Init/Datatypes/nat.ind#1/1/1
alias S /Coq/Init/Datatypes/nat.ind#1/1/2
alias le /Coq/Init/Peano/le.ind#1/1
alias lt /Coq/Init/Peano/lt.con
alias not /Coq/Init/Logic/not.con
-alias and /Coq/Init/Logic/Conjunction/and.ind#1/1
+alias and /Coq/Init/Logic/and.ind#1/1
alias prod /Coq/Init/Datatypes/prod.ind#1/1
-alias list /Coq/Lists/PolyList/Lists/list.ind#1/1
-alias AllS_assoc /Coq/Lists/TheoryList/Lists/Assoc_sec/AllS_assoc.ind#1/1
+alias list /Coq/Lists/PolyList/list.ind#1/1
+alias AllS_assoc /Coq/Lists/TheoryList/AllS_assoc.ind#1/1
+alias V /Coq/Lists/PolyList/Lists/A.var
+alias VA /Coq/Lists/TheoryList/Lists/A.var
+alias VB /Coq/Lists/TheoryList/Lists/Assoc_sec/B.var
-!A:Set.!B:Set.!P:!a:A.Prop.!l:(list (prod A B)).
- !H:(AllS_assoc A B P l).
+!A:Set.!B:Set.!P:!a:A.Prop.!l:list{V := (prod A B)}.
+ !H:(AllS_assoc {VA := A ; VB := B} P l).
(and
- (eq (list (prod A B)) l l)
+ (eq list{V := (prod A B)} l l)
(eqT !n:A.Prop P P))
(* Intros; Elim H: