module LA = LexiconAst;;
module PT = CicNotationPt;;
module A = Ast;;
+
+type sort = Prop | Univ;;
+
let floc = HExtlib.dummy_floc;;
+
let paramod_timeout = ref 600;;
+let depth = ref 10;;
let universe = "Univ" ;;
+let prop = "Prop";;
let kw = [
"and","myand"
;;
let rec collect_arities_from_term = function
- | A.Constant name -> [name,0]
- | A.Variable name -> []
+ | A.Constant name -> [name,(0,Univ)]
+ | A.Variable name -> [name,(0,Univ)]
| A.Function (name,l) ->
- (name,List.length l)::List.flatten (List.map collect_arities_from_term l)
+ (name,(List.length l,Univ))::
+ List.flatten (List.map collect_arities_from_term l)
;;
let rec collect_fv_from_term = function
let collect_arities_from_atom a =
let aux = function
- | A.Proposition name -> assert false
- | A.Predicate _ -> assert false
+ | A.Proposition name -> [name,(0,Prop)]
+ | A.Predicate (name,args) ->
+ (name,(List.length args,Prop)) ::
+ (List.flatten (List.map collect_arities_from_term args))
| A.True -> []
| A.False -> []
- | A.Eq (t1,t2) -> collect_arities_from_term t1 @ collect_arities_from_term t2
- | A.NotEq (t1,t2) -> collect_arities_from_term t1 @ collect_arities_from_term t2
+ | A.Eq (t1,t2) ->
+ collect_arities_from_term t1 @ collect_arities_from_term t2
+ | A.NotEq (t1,t2) ->
+ collect_arities_from_term t1 @ collect_arities_from_term t2
in
- aux a
+ HExtlib.list_uniq (List.sort compare (List.flatten (List.map aux a)))
;;
let collect_fv_from_atom a =
let aux = function
- | A.Proposition name -> assert false
- | A.Predicate _ -> assert false
+ | A.Proposition name -> [name]
+ | A.Predicate (name,args) ->
+ name :: List.flatten (List.map collect_fv_from_term args)
| A.True -> []
| A.False -> []
| A.Eq (t1,t2) -> collect_fv_from_term t1 @ collect_fv_from_term t2
| A.NotEq (t1,t2) -> collect_fv_from_term t1 @ collect_fv_from_term t2
in
- HExtlib.list_uniq (List.sort compare (aux a))
+ let rec aux2 = function
+ | [] -> []
+ | hd::tl -> aux hd @ aux2 tl
+ in
+ HExtlib.list_uniq (List.sort compare (aux2 a))
;;
-let collect_fv_from_formulae = function
- | A.Disjunction _ -> assert false
+let rec collect_fv_from_formulae = function
+ | A.Disjunction (a,b) ->
+ collect_fv_from_formulae a @ collect_fv_from_formulae b
| A.NegAtom a
- | A.Atom a -> collect_fv_from_atom a
+ | A.Atom a -> collect_fv_from_atom [a]
;;
let rec convert_term = function
PT.Appl (mk_ident name :: List.map convert_term args)
;;
-let atom_of_formula = function
- | A.Disjunction _ -> assert false
- | A.NegAtom a -> a (* removes the negation *)
- | A.Atom a -> a
+let rec atom_of_formula = function
+ | A.Disjunction (a,b) ->
+ atom_of_formula a @ atom_of_formula b
+ | A.NegAtom a -> [a] (* removes the negation *)
+ | A.Atom a -> [a]
;;
-let rec mk_arrow component = function
- | 0 -> mk_ident component
+let rec mk_arrow component tail = function
+ | 0 -> begin
+ match tail with
+ | Prop -> mk_ident prop
+ | Univ -> mk_ident universe
+ end
| n ->
PT.Binder
(`Forall,
((mk_ident "_"),Some (mk_ident component)),
- mk_arrow component (n-1))
+ mk_arrow component tail (n-1))
;;
let build_ctx_for_arities univesally arities t =
let binder = if univesally then `Forall else `Exists in
let rec aux = function
| [] -> t
- | (name,nargs)::tl ->
+ | (name,(nargs,sort))::tl ->
PT.Binder
(binder,
- (mk_ident name,Some (mk_arrow universe nargs)),
+ (mk_ident name,Some (mk_arrow universe sort nargs)),
aux tl)
in
aux arities
let convert_atom universally a =
let aux = function
- | A.Proposition _ -> assert false
+ | A.Proposition p -> mk_ident p
| A.Predicate (name,params) ->
- prerr_endline ("Predicate is unsupported: " ^ name);
- assert false
+ PT.Appl ((mk_ident name) :: (List.map convert_term params))
| A.True -> mk_ident "True"
| A.False -> mk_ident "False"
| A.Eq (l,r)
| A.NotEq (l,r) -> (* removes the negation *)
PT.Appl [mk_ident "eq";mk_ident universe;convert_term l;convert_term r]
in
+ let rec aux2 = function
+ | [] -> assert false
+ | [x] -> aux x
+ | he::tl ->
+ if universally then
+ PT.Binder (`Forall, (mk_ident "_", Some (aux he)), aux2 tl)
+ else
+ PT.Appl [mk_ident "And";aux he;aux2 tl]
+ in
+ let arities = collect_arities_from_atom a in
+ let fv = collect_fv_from_atom a in
build_ctx_for_arities universally
- (List.map (fun x -> (x,0)) (collect_fv_from_atom a)) (aux a)
+ (List.filter
+ (function (x,(0,Univ)) -> List.mem x fv | _-> false)
+ arities)
+ (aux2 a)
;;
let collect_arities atom ctx =
- let atoms = atom::(List.map atom_of_formula ctx) in
- HExtlib.list_uniq (List.sort (fun (a,_) (b,_) -> compare a b)
- (List.flatten (List.map collect_arities_from_atom atoms)))
+ let atoms = atom@(List.flatten (List.map atom_of_formula ctx)) in
+ collect_arities_from_atom atoms
;;
-let assert_formulae_is_1eq_negated f =
+let collect_arities_from_formulae f =
+ let rec collect_arities_from_formulae = function
+ | A.Disjunction (a,b) ->
+ collect_arities_from_formulae a @ collect_arities_from_formulae b
+ | A.NegAtom a
+ | A.Atom a -> collect_arities_from_atom [a]
+ in
+ HExtlib.list_uniq (List.sort compare (collect_arities_from_formulae f))
+;;
+
+let is_formulae_1eq_negated f =
let atom = atom_of_formula f in
match atom with
- | A.Eq (l,r) -> failwith "Negated formula is not negated"
- | A.NotEq (l,r) -> ()
- | _ -> failwith "Not a unit equality formula"
+ | [A.NotEq (l,r)] -> true
+ | _ -> false
;;
+let collect_fv_1stord_from_formulae f =
+ let arities = collect_arities_from_formulae f in
+ let fv = collect_fv_from_formulae f in
+ List.map fst
+ (List.filter (function (x,(0,Univ)) -> List.mem x fv | _-> false) arities)
+;;
+
let rec convert_formula fv no_arities context f =
let atom = atom_of_formula f in
let t = convert_atom (fv = []) atom in
;;
let check_if_atom_is_negative = function
- | A.True | A.False | A.Proposition _ | A.Predicate _ -> assert false
+ | A.True -> false
+ | A.False -> true
+ | A.Proposition _ -> false
+ | A.Predicate _ -> false
| A.Eq _ -> false
| A.NotEq _ -> true
;;
-let check_if_formula_is_negative = function
- | A.Disjunction _ -> assert false
+let rec check_if_formula_is_negative = function
+ | A.Disjunction (a,b) ->
+ check_if_formula_is_negative a && check_if_formula_is_negative b
| A.NegAtom a -> not (check_if_atom_is_negative a)
| A.Atom a -> check_if_atom_is_negative a
;;
| A.Negated_conjecture when not (check_if_formula_is_negative f) ->
statements, f::context
| A.Negated_conjecture ->
- assert_formulae_is_1eq_negated f;
- let fv = collect_fv_from_formulae f in
+ let ueq_case = is_formulae_1eq_negated f in
+ let fv = collect_fv_1stord_from_formulae f in
(*
if fv <> [] then
prerr_endline ("FREE VARIABLES: " ^ String.concat "," fv);
fv))
else [])@
[GA.Executable(floc,GA.Tactical(floc, GA.Tactic(floc,
- GA.Auto (floc,["paramodulation","";"timeout",string_of_int !paramod_timeout])),
+ if ueq_case then
+ GA.Auto (floc,["paramodulation","";
+ "timeout",string_of_int !paramod_timeout])
+ else
+ GA.Auto (floc,["depth",string_of_int !depth])
+ ),
Some (GA.Dot(floc))));
GA.Executable(floc,GA.Tactical(floc, GA.Try(floc,
GA.Tactic (floc, GA.Assumption floc)), Some (GA.Dot(floc))))
;;
(* MAIN *)
-let tptp2grafite ?(timeout=600) ?raw_preamble ~tptppath ~filename () =
+let tptp2grafite ?(timeout=600) ?(def_depth=10) ?raw_preamble ~tptppath ~filename () =
paramod_timeout := timeout;
+ depth := def_depth;
let rec aux = function
| [] -> []
| ((A.Inclusion (file,_)) as hd) :: tl ->