include "formal_topology/relations.ma".
include "datatypes/categories.ma".
-
-definition is_saturation ≝
- λC:REL.λA:unary_morphism (Ω \sup C) (Ω \sup C).
- ∀U,V. (U ⊆ A V) = (A U ⊆ A V).
-
-definition is_reduction ≝
- λC:REL.λJ:unary_morphism (Ω \sup C) (Ω \sup C).
- ∀U,V. (J U ⊆ V) = (J U ⊆ J V).
-
-theorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S.
- intros 4; assumption.
-qed.
-
-theorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3.
- intros; apply transitive_subseteq_operator; [apply S2] assumption.
-qed.
-
-theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ⊆ A U.
- intros; apply (fi ?? (H ??)); apply subseteq_refl.
-qed.
-
-theorem saturation_monotone:
- ∀C,A. is_saturation C A →
- ∀U,V. U ⊆ V → A U ⊆ A V.
- intros; apply (if ?? (H ??)); apply subseteq_trans; [apply V|3: apply saturation_expansive ]
- assumption.
-qed.
-
-theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. A (A U) = A U.
- intros; split;
- [ apply (if ?? (H ??)); apply subseteq_refl
- | apply saturation_expansive; assumption]
-qed.
+include "formal_topology/saturations_reductions.ma".
record basic_topology: Type ≝
{ carrbt:> REL;
compatibility: ∀U,V. (A U ≬ J V) = (U ≬ J V)
}.
-(* the same as ⋄ for a basic pair *)
-definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V).
- intros; constructor 1;
- [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S});
- intros; simplify; split; intro; cases H1; exists [1,3: apply w]
- [ apply (. (#‡H)‡#); assumption
- | apply (. (#‡H \sup -1)‡#); assumption]
- | intros; split; simplify; intros; cases H2; exists [1,3: apply w]
- [ apply (. #‡(#‡H1)); cases x; split; try assumption;
- apply (if ?? (H ??)); assumption
- | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption;
- apply (if ?? (H \sup -1 ??)); assumption]]
-qed.
-
-(* the same as □ for a basic pair *)
-definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V).
- intros; constructor 1;
- [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S});
- intros; simplify; split; intros; apply H1;
- [ apply (. #‡H \sup -1); assumption
- | apply (. #‡H); assumption]
- | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)]
- apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption]
-qed.
-
-(* minus_image is the same as ext *)
-
-theorem image_id: ∀o,U. image o o (id1 REL o) U = U.
- intros; unfold image; simplify; split; simplify; intros;
- [ change with (a ∈ U);
- cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption
- | change in f with (a ∈ U);
- exists; [apply a] split; [ change with (a = a); apply refl | assumption]]
-qed.
-
-theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U.
- intros; unfold minus_star_image; simplify; split; simplify; intros;
- [ change with (a ∈ U); apply H; change with (a=a); apply refl
- | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f]
-qed.
-
-theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X).
- intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x;
- clear x; [ cases f; clear f; | cases f1; clear f1 ]
- exists; try assumption; cases x; clear x; split; try assumption;
- exists; try assumption; split; assumption.
-qed.
-
-theorem minus_star_image_comp:
- ∀A,B,C,r,s,X.
- minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X).
- intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros;
- [ apply H; exists; try assumption; split; assumption
- | change with (x ∈ X); cases f; cases x1; apply H; assumption]
-qed.
-
record continuous_relation (S,T: basic_topology) : Type ≝
{ cont_rel:> arrows1 ? S T;
reduced: ∀U. U = J ? U → image ?? cont_rel U = J ? (image ?? cont_rel U);
coercion cont_rel''.
-theorem ext_comp:
- ∀o1,o2,o3: REL.
- ∀a: arrows1 ? o1 o2.
- ∀b: arrows1 ? o2 o3.
- ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x).
- intros;
- unfold ext; unfold extS; simplify; split; intro; simplify; intros;
- cases f; clear f; split; try assumption;
- [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split;
- [1: split] assumption;
- | cases H; clear H; cases x1; clear x1; exists [apply w]; split;
- [2: cases f] assumption]
-qed.
-
-(*
-(* this proof is more logic-oriented than set/lattice oriented *)
-theorem continuous_relation_eqS:
- ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2.
- a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X).
- intros;
- cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y);
- [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split;
- try assumption; split; assumption]
- cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y));
- [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption;
- apply (. #‡(H1 ?));
- apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x);
- assumption;] clear Hcut;
- split; apply (if ?? (A_is_saturation ???)); intros 2;
- [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)]
- cases Hletin; clear Hletin; cases x; clear x;
- cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X);
- [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption;
- exists [1,3: apply w] split; assumption;]
- cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X));
- [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
- apply Hcut2; assumption.
-qed.
-*)
-
theorem continuous_relation_eq':
∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
a = a' → ∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X).
[ apply I | assumption ]]
qed.
-theorem extS_singleton:
- ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x.
- intros; unfold extS; unfold ext; unfold singleton; simplify;
- split; intros 2; simplify; cases f; split; try assumption;
- [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1);
- assumption
- | exists; try assumption; split; try assumption; change with (x = x); apply refl]
-qed.
-
theorem continuous_relation_eq_inv':
∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
(∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'.
| intros; simplify; intro; simplify;
apply (.= †((id_neutral_left1 ????)‡#));
apply refl1]
-qed.
\ No newline at end of file
+qed.
+
+(*CSC: unused! *)
+(* this proof is more logic-oriented than set/lattice oriented *)
+theorem continuous_relation_eqS:
+ ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2.
+ a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X).
+ intros;
+ cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y);
+ [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split;
+ try assumption; split; assumption]
+ cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y));
+ [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption;
+ apply (. #‡(H1 ?));
+ apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x);
+ assumption;] clear Hcut;
+ split; apply (if ?? (A_is_saturation ???)); intros 2;
+ [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)]
+ cases Hletin; clear Hletin; cases x; clear x;
+ cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X);
+ [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption;
+ exists [1,3: apply w] split; assumption;]
+ cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X));
+ [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
+ apply Hcut2; assumption.
+qed.
assumption]
qed.
+(* the same as ⋄ for a basic pair *)
+definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V).
+ intros; constructor 1;
+ [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S});
+ intros; simplify; split; intro; cases H1; exists [1,3: apply w]
+ [ apply (. (#‡H)‡#); assumption
+ | apply (. (#‡H \sup -1)‡#); assumption]
+ | intros; split; simplify; intros; cases H2; exists [1,3: apply w]
+ [ apply (. #‡(#‡H1)); cases x; split; try assumption;
+ apply (if ?? (H ??)); assumption
+ | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption;
+ apply (if ?? (H \sup -1 ??)); assumption]]
+qed.
+
+(* the same as □ for a basic pair *)
+definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V).
+ intros; constructor 1;
+ [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S});
+ intros; simplify; split; intros; apply H1;
+ [ apply (. #‡H \sup -1); assumption
+ | apply (. #‡H); assumption]
+ | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)]
+ apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption]
+qed.
+
+(* minus_image is the same as ext *)
+
+theorem image_id: ∀o,U. image o o (id1 REL o) U = U.
+ intros; unfold image; simplify; split; simplify; intros;
+ [ change with (a ∈ U);
+ cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption
+ | change in f with (a ∈ U);
+ exists; [apply a] split; [ change with (a = a); apply refl | assumption]]
+qed.
+
+theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U.
+ intros; unfold minus_star_image; simplify; split; simplify; intros;
+ [ change with (a ∈ U); apply H; change with (a=a); apply refl
+ | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f]
+qed.
+
+theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X).
+ intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x;
+ clear x; [ cases f; clear f; | cases f1; clear f1 ]
+ exists; try assumption; cases x; clear x; split; try assumption;
+ exists; try assumption; split; assumption.
+qed.
+
+theorem minus_star_image_comp:
+ ∀A,B,C,r,s,X.
+ minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X).
+ intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros;
+ [ apply H; exists; try assumption; split; assumption
+ | change with (x ∈ X); cases f; cases x1; apply H; assumption]
+qed.
+
+(*CSC: unused! *)
+theorem ext_comp:
+ ∀o1,o2,o3: REL.
+ ∀a: arrows1 ? o1 o2.
+ ∀b: arrows1 ? o2 o3.
+ ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x).
+ intros;
+ unfold ext; unfold extS; simplify; split; intro; simplify; intros;
+ cases f; clear f; split; try assumption;
+ [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split;
+ [1: split] assumption;
+ | cases H; clear H; cases x1; clear x1; exists [apply w]; split;
+ [2: cases f] assumption]
+qed.
+
+theorem extS_singleton:
+ ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x.
+ intros; unfold extS; unfold ext; unfold singleton; simplify;
+ split; intros 2; simplify; cases f; split; try assumption;
+ [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1);
+ assumption
+ | exists; try assumption; split; try assumption; change with (x = x); apply refl]
+qed.
\ No newline at end of file