@{ ${ fold right @{$Px} rec acc @{'sigma (λ${ident x}.$acc)} } }
}.
+notation "hvbox(« term 19 a, break term 19 b»)"
+with precedence 90 for @{ 'dp $a $b }.
+
+(* dependent pairs (i.e. Sigma with predicate in Type[0]) ********************)
+
+notation < "hvbox(𝚺 ident i : ty break . p)"
+ left associative with precedence 20
+for @{'dpair (\lambda ${ident i} : $ty. $p) }.
+
+notation < "hvbox(𝚺 ident i break . p)"
+ with precedence 20
+for @{'dpair (\lambda ${ident i}. $p) }.
+
+(*
+notation < "hvbox(𝚺 ident i opt (: ty) break . p)"
+ right associative with precedence 20
+for @{ 'dpair ${default
+ @{\lambda ${ident i} : $ty. $p}
+ @{\lambda ${ident i} . $p}}}.
+*)
+
+notation > "𝚺 list1 ident x sep , opt (: T). term 19 Px"
+ with precedence 20
+ for ${ default
+ @{ ${ fold right @{$Px} rec acc @{'dpair (λ${ident x}:$T.$acc)} } }
+ @{ ${ fold right @{$Px} rec acc @{'dpair (λ${ident x}.$acc)} } }
+ }.
+
+notation "hvbox(❬ term 19 a, break term 19 b❭)"
+with precedence 90 for @{ 'mk_DPair $a $b }.
+
(* equality, conguence ******************************************************)
notation > "hvbox(a break = b)"
notation "(⊩ \sub term 90 c) " with precedence 60 for @{'Vdash $c}.
notation < "maction (mstyle color #ff0000 (…)) (t)"
-non associative with precedence 90 for @{'hide $t}.
\ No newline at end of file
+non associative with precedence 90 for @{'hide $t}.
include "basics/jmeq.ma".
include "basics/types.ma".
-coercion inject nocomposites: ∀A.∀P:A → Prop.∀a.∀p:P a.Σx:A.P x ≝ λA,P,a,p. mk_Sig … a p on a:? to Σx:?.?.
-coercion eject nocomposites: ∀A.∀P:A → Prop.∀c:Σx:A.P x.A ≝ λA,P,c. pi1 … c on _c:Σx:?.? to ?.
+coercion inject nocomposites: ∀A.∀P:A → Prop.∀a.∀p:P a.Sig A P ≝ mk_Sig on a:? to Sig ??.
+coercion eject nocomposites: ∀A.∀P:A → Prop.∀c:Sig A P.A ≝ pi1 on _c:Sig ?? to ?.
; dpi2: f dpi1
}.
-interpretation "DPair" 'sigma x = (DPair ? x).
+interpretation "DPair" 'dpair x = (DPair ? x).
-notation "hvbox(« term 19 a, break term 19 b»)"
-with precedence 90 for @{ 'dp $a $b }.
-
-interpretation "mk_DPair" 'dp x y = (mk_DPair ?? x y).
+interpretation "mk_DPair" 'mk_DPair x y = (mk_DPair ?? x y).
(* sigma *)
record Sig (A:Type[0]) (f:A→Prop) : Type[0] ≝ {