(* *)
(**************************************************************************)
-include "basic_2/notation/relations/pconvstar_3.ma".
+include "basic_2/notation/relations/pconvstar_4.ma".
include "basic_2/conversion/cpc.ma".
(* CONTEXT-SENSITIVE PARALLEL EQUIVALENCE ON TERMS **************************)
-definition cpcs: lenv → relation term ≝ LTC … cpc.
+definition cpcs: relation4 genv lenv term term ≝
+ λG. LTC … (cpc G).
interpretation "context-sensitive parallel equivalence (term)"
- 'PConvStar L T1 T2 = (cpcs L T1 T2).
+ 'PConvStar G L T1 T2 = (cpcs G L T1 T2).
(* Basic eliminators ********************************************************)
-lemma cpcs_ind: ∀L,T1. ∀R:predicate term. R T1 →
+lemma cpcs_ind: ∀G,L,T1. ∀R:predicate term. R T1 →
(∀T,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T ⬌ T2 → R T → R T2) →
∀T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 → R T2.
-#L #T1 #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) //
+#G #L #T1 #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) //
qed-.
-lemma cpcs_ind_dx: ∀L,T2. ∀R:predicate term. R T2 →
+lemma cpcs_ind_dx: ∀G,L,T2. ∀R:predicate term. R T2 →
(∀T1,T. ⦃G, L⦄ ⊢ T1 ⬌ T → ⦃G, L⦄ ⊢ T ⬌* T2 → R T → R T1) →
∀T1. ⦃G, L⦄ ⊢ T1 ⬌* T2 → R T1.
-#L #T2 #R #HT2 #IHT2 #T1 #HT12
+#G #L #T2 #R #HT2 #IHT2 #T1 #HT12
@(TC_star_ind_dx … HT2 IHT2 … HT12) //
qed-.
(* Basic properties *********************************************************)
(* Basic_1: was: pc3_refl *)
-lemma cpcs_refl: ∀L. reflexive … (cpcs L).
+lemma cpcs_refl: ∀G,L. reflexive … (cpcs G L).
/2 width=1/ qed.
(* Basic_1: was: pc3_s *)
-lemma cpcs_sym: ∀L. symmetric … (cpcs L).
-#L @TC_symmetric // qed.
+lemma cpcs_sym: ∀G,L. symmetric … (cpcs G L).
+#G #L @TC_symmetric // qed.
-lemma cpc_cpcs: ∀L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ⦃G, L⦄ ⊢ T2 ⬌* T2.
+lemma cpc_cpcs: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ⦃G, L⦄ ⊢ T2 ⬌* T2.
/2 width=1/ qed.
-lemma cpcs_strap1: ∀L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T ⬌ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L @step qed.
+lemma cpcs_strap1: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T ⬌ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L @step qed.
-lemma cpcs_strap2: ∀L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌ T → ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L @TC_strap qed.
+lemma cpcs_strap2: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌ T → ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L @TC_strap qed.
(* Basic_1: was: pc3_pr2_r *)
-lemma cpr_cpcs_dx: ∀L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpr_cpcs_dx: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=1/ qed.
(* Basic_1: was: pc3_pr2_x *)
-lemma cpr_cpcs_sn: ∀L,T1,T2. ⦃G, L⦄ ⊢ T2 ➡ T1 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpr_cpcs_sn: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T2 ➡ T1 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=1/ qed.
-lemma cpcs_cpr_strap1: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpcs_cpr_strap1: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3/ qed.
(* Basic_1: was: pc3_pr2_u *)
-lemma cpcs_cpr_strap2: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpcs_cpr_strap2: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3/ qed.
-lemma cpcs_cpr_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpcs_cpr_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3/ qed.
-lemma cpr_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpr_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3/ qed-.
(* Basic_1: was: pc3_pr2_u2 *)
-lemma cpcs_cpr_conf: ∀L,T1,T. ⦃G, L⦄ ⊢ T ➡ T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpcs_cpr_conf: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T ➡ T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3/ qed.
(* Basic_1: removed theorems 9:
(* Advanced inversion lemmas ************************************************)
-lemma cpcs_inv_cprs: ∀L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
+lemma cpcs_inv_cprs: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
∃∃T. ⦃G, L⦄ ⊢ T1 ➡* T & ⦃G, L⦄ ⊢ T2 ➡* T.
-#L #T1 #T2 #H @(cpcs_ind … H) -T2
+#G #L #T1 #T2 #H @(cpcs_ind … H) -T2
[ /3 width=3/
| #T #T2 #_ #HT2 * #T0 #HT10 elim HT2 -HT2 #HT2 #HT0
[ elim (cprs_strip … HT0 … HT2) -T #T #HT0 #HT2
qed-.
(* Basic_1: was: pc3_gen_sort *)
-lemma cpcs_inv_sort: ∀L,k1,k2. ⦃G, L⦄ ⊢ ⋆k1 ⬌* ⋆k2 → k1 = k2.
-#L #k1 #k2 #H
+lemma cpcs_inv_sort: ∀G,L,k1,k2. ⦃G, L⦄ ⊢ ⋆k1 ⬌* ⋆k2 → k1 = k2.
+#G #L #k1 #k2 #H
elim (cpcs_inv_cprs … H) -H #T #H1
>(cprs_inv_sort1 … H1) -T #H2
lapply (cprs_inv_sort1 … H2) -L #H destruct //
qed-.
-lemma cpcs_inv_abst1: ∀a,L,W1,T1,T. ⦃G, L⦄ ⊢ ⓛ{a}W1.T1 ⬌* T →
+lemma cpcs_inv_abst1: ∀a,G,L,W1,T1,T. ⦃G, L⦄ ⊢ ⓛ{a}W1.T1 ⬌* T →
∃∃W2,T2. ⦃G, L⦄ ⊢ T ➡* ⓛ{a}W2.T2 & ⦃G, L⦄ ⊢ ⓛ{a}W1.T1 ➡* ⓛ{a}W2.T2.
-#a #L #W1 #T1 #T #H
+#a #G #L #W1 #T1 #T #H
elim (cpcs_inv_cprs … H) -H #X #H1 #H2
elim (cprs_inv_abst1 … H1) -H1 #W2 #T2 #HW12 #HT12 #H destruct
@(ex2_2_intro … H2) -H2 /2 width=2/ (**) (* explicit constructor, /3 width=6/ is slow *)
qed-.
-lemma cpcs_inv_abst2: ∀a,L,W1,T1,T. ⦃G, L⦄ ⊢ T ⬌* ⓛ{a}W1.T1 →
+lemma cpcs_inv_abst2: ∀a,G,L,W1,T1,T. ⦃G, L⦄ ⊢ T ⬌* ⓛ{a}W1.T1 →
∃∃W2,T2. ⦃G, L⦄ ⊢ T ➡* ⓛ{a}W2.T2 & ⦃G, L⦄ ⊢ ⓛ{a}W1.T1 ➡* ⓛ{a}W2.T2.
/3 width=1 by cpcs_inv_abst1, cpcs_sym/ qed-.
(* Basic_1: was: pc3_gen_sort_abst *)
-lemma cpcs_inv_sort_abst: ∀a,L,W,T,k. ⦃G, L⦄ ⊢ ⋆k ⬌* ⓛ{a}W.T → ⊥.
-#a #L #W #T #k #H
+lemma cpcs_inv_sort_abst: ∀a,G,L,W,T,k. ⦃G, L⦄ ⊢ ⋆k ⬌* ⓛ{a}W.T → ⊥.
+#a #G #L #W #T #k #H
elim (cpcs_inv_cprs … H) -H #X #H1
>(cprs_inv_sort1 … H1) -X #H2
elim (cprs_inv_abst1 … H2) -H2 #W0 #T0 #_ #_ #H destruct
qed-.
(* Basic_1: was: pc3_gen_lift *)
-lemma cpcs_inv_lift: ∀L,K,d,e. ⇩[d, e] L ≡ K →
+lemma cpcs_inv_lift: ∀G,L,K,d,e. ⇩[d, e] L ≡ K →
∀T1,U1. ⇧[d, e] T1 ≡ U1 → ∀T2,U2. ⇧[d, e] T2 ≡ U2 →
- ⦃G, L⦄ ⊢ U1 ⬌* U2 → K ⊢ T1 ⬌* T2.
-#L #K #d #e #HLK #T1 #U1 #HTU1 #T2 #U2 #HTU2 #HU12
+ ⦃G, L⦄ ⊢ U1 ⬌* U2 → ⦃G, K⦄ ⊢ T1 ⬌* T2.
+#G #L #K #d #e #HLK #T1 #U1 #HTU1 #T2 #U2 #HTU2 #HU12
elim (cpcs_inv_cprs … HU12) -HU12 #U #HU1 #HU2
elim (cprs_inv_lift1 … HU1 … HLK … HTU1) -U1 #T #HTU #HT1
elim (cprs_inv_lift1 … HU2 … HLK … HTU2) -L -U2 #X #HXU
(* Advanced properties ******************************************************)
-lemma lpr_cpcs_trans: ∀L1,L2. L1 ⊢ ➡ L2 → ∀T1,T2. L2 ⊢ T1 ⬌* T2 → L1 ⊢ T1 ⬌* T2.
-#L1 #L2 #HL12 #T1 #T2 #H
+lemma lpr_cpcs_trans: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 →
+ ∀T1,T2. ⦃G, L2⦄ ⊢ T1 ⬌* T2 → ⦃G, L1⦄ ⊢ T1 ⬌* T2.
+#G #L1 #L2 #HL12 #T1 #T2 #H
elim (cpcs_inv_cprs … H) -H #T #HT1 #HT2
lapply (lpr_cprs_trans … HT1 … HL12) -HT1
lapply (lpr_cprs_trans … HT2 … HL12) -L2 /2 width=3/
qed-.
-lemma lprs_cpcs_trans: ∀L1,L2. L1 ⊢ ➡* L2 → ∀T1,T2. L2 ⊢ T1 ⬌* T2 → L1 ⊢ T1 ⬌* T2.
-#L1 #L2 #HL12 #T1 #T2 #H
+lemma lprs_cpcs_trans: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡* L2 →
+ ∀T1,T2. ⦃G, L2⦄ ⊢ T1 ⬌* T2 → ⦃G, L1⦄ ⊢ T1 ⬌* T2.
+#G #L1 #L2 #HL12 #T1 #T2 #H
elim (cpcs_inv_cprs … H) -H #T #HT1 #HT2
lapply (lprs_cprs_trans … HT1 … HL12) -HT1
lapply (lprs_cprs_trans … HT2 … HL12) -L2 /2 width=3/
qed-.
-lemma cpr_cprs_conf_cpcs: ∀L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T #T1 #T2 #HT1 #HT2
+lemma cpr_cprs_conf_cpcs: ∀G,L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T #T1 #T2 #HT1 #HT2
elim (cprs_strip … HT1 … HT2) /2 width=3 by cpr_cprs_div/
qed-.
-lemma cprs_cpr_conf_cpcs: ∀L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T2 ⬌* T1.
-#L #T #T1 #T2 #HT1 #HT2
+lemma cprs_cpr_conf_cpcs: ∀G,L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T2 ⬌* T1.
+#G #L #T #T1 #T2 #HT1 #HT2
elim (cprs_strip … HT1 … HT2) /2 width=3 by cprs_cpr_div/
qed-.
-lemma cprs_conf_cpcs: ∀L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T #T1 #T2 #HT1 #HT2
+lemma cprs_conf_cpcs: ∀G,L,T,T1,T2. ⦃G, L⦄ ⊢ T ➡* T1 → ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T #T1 #T2 #HT1 #HT2
elim (cprs_conf … HT1 … HT2) /2 width=3/
qed-.
-lemma lprs_cprs_conf: ∀L1,L2. L1 ⊢ ➡* L2 → ∀T1,T2. L1 ⊢ T1 ➡* T2 → L2 ⊢ T1 ⬌* T2.
-#L1 #L2 #HL12 #T1 #T2 #HT12
+lemma lprs_cprs_conf: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡* L2 →
+ ∀T1,T2. ⦃G, L1⦄ ⊢ T1 ➡* T2 → ⦃G, L2⦄ ⊢ T1 ⬌* T2.
+#G #L1 #L2 #HL12 #T1 #T2 #HT12
elim (lprs_cprs_conf_dx … HT12 … HL12) -L1 /2 width=3/
qed-.
(* Basic_1: was: pc3_wcpr0_t *)
(* Basic_1: note: pc3_wcpr0_t should be renamed *)
-lemma lpr_cprs_conf: ∀L1,L2. L1 ⊢ ➡ L2 → ∀T1,T2. L1 ⊢ T1 ➡* T2 → L2 ⊢ T1 ⬌* T2.
+lemma lpr_cprs_conf: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 →
+ ∀T1,T2. ⦃G, L1⦄ ⊢ T1 ➡* T2 → ⦃G, L2⦄ ⊢ T1 ⬌* T2.
/3 width=5 by lprs_cprs_conf, lpr_lprs/ qed-.
(* Basic_1: was only: pc3_pr0_pr2_t *)
(* Basic_1: note: pc3_pr0_pr2_t should be renamed *)
-lemma lpr_cpr_conf: ∀L1,L2. L1 ⊢ ➡ L2 → ∀T1,T2. L1 ⊢ T1 ➡ T2 → L2 ⊢ T1 ⬌* T2.
+lemma lpr_cpr_conf: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 →
+ ∀T1,T2. ⦃G, L1⦄ ⊢ T1 ➡ T2 → ⦃G, L2⦄ ⊢ T1 ⬌* T2.
/3 width=5 by lpr_cprs_conf, cpr_cprs/ qed-.
(* Basic_1: was only: pc3_thin_dx *)
-lemma cpcs_flat: ∀L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
- ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1. T1 ⬌* ⓕ{I}V2. T2.
-#L #V1 #V2 #HV12 #T1 #T2 #HT12 #I
+lemma cpcs_flat: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
+ ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ⬌* ⓕ{I}V2.T2.
+#G #L #V1 #V2 #HV12 #T1 #T2 #HT12 #I
elim (cpcs_inv_cprs … HV12) -HV12 #V #HV1 #HV2
elim (cpcs_inv_cprs … HT12) -HT12 /3 width=5 by cprs_flat, cprs_div/ (**) (* /3 width=5/ is too slow *)
qed.
-lemma cpcs_flat_dx_cpr_rev: ∀L,V1,V2. ⦃G, L⦄ ⊢ V2 ➡ V1 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
- ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1. T1 ⬌* ⓕ{I}V2. T2.
+lemma cpcs_flat_dx_cpr_rev: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V2 ➡ V1 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 →
+ ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ⬌* ⓕ{I}V2.T2.
/3 width=1/ qed.
-lemma cpcs_bind_dx: ∀a,I,L,V,T1,T2. L.ⓑ{I}V ⊢ T1 ⬌* T2 →
- ⦃G, L⦄ ⊢ ⓑ{a,I}V. T1 ⬌* ⓑ{a,I}V. T2.
-#a #I #L #V #T1 #T2 #HT12
+lemma cpcs_bind_dx: ∀a,I,G,L,V,T1,T2. ⦃G, L.ⓑ{I}V⦄ ⊢ T1 ⬌* T2 →
+ ⦃G, L⦄ ⊢ ⓑ{a,I}V.T1 ⬌* ⓑ{a,I}V.T2.
+#a #I #G #L #V #T1 #T2 #HT12
elim (cpcs_inv_cprs … HT12) -HT12 /3 width=5 by cprs_div, cprs_bind/ (**) (* /3 width=5/ is a bit slow *)
qed.
-lemma cpcs_bind_sn: ∀a,I,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ⦃G, L⦄ ⊢ ⓑ{a,I}V1. T ⬌* ⓑ{a,I}V2. T.
-#a #I #L #V1 #V2 #T #HV12
+lemma cpcs_bind_sn: ∀a,I,G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ⦃G, L⦄ ⊢ ⓑ{a,I}V1. T ⬌* ⓑ{a,I}V2. T.
+#a #I #G #L #V1 #V2 #T #HV12
elim (cpcs_inv_cprs … HV12) -HV12 /3 width=5 by cprs_div, cprs_bind/ (**) (* /3 width=5/ is a bit slow *)
qed.
-lemma lsubr_cpcs_trans: ∀L1,T1,T2. L1 ⊢ T1 ⬌* T2 →
- ∀L2. L2 ⊑ L1 → L2 ⊢ T1 ⬌* T2.
-#L1 #T1 #T2 #HT12
+lemma lsubr_cpcs_trans: ∀G,L1,T1,T2. ⦃G, L1⦄ ⊢ T1 ⬌* T2 →
+ ∀L2. L2 ⊑ L1 → ⦃G, L2⦄ ⊢ T1 ⬌* T2.
+#G #L1 #T1 #T2 #HT12
elim (cpcs_inv_cprs … HT12) -HT12
/3 width=5 by cprs_div, lsubr_cprs_trans/ (**) (* /3 width=5/ is a bit slow *)
qed-.
(* Basic_1: was: pc3_lift *)
-lemma cpcs_lift: ∀L,K,d,e. ⇩[d, e] L ≡ K →
+lemma cpcs_lift: ∀G,L,K,d,e. ⇩[d, e] L ≡ K →
∀T1,U1. ⇧[d, e] T1 ≡ U1 → ∀T2,U2. ⇧[d, e] T2 ≡ U2 →
- K ⊢ T1 ⬌* T2 → ⦃G, L⦄ ⊢ U1 ⬌* U2.
-#L #K #d #e #HLK #T1 #U1 #HTU1 #T2 #U2 #HTU2 #HT12
+ ⦃G, K⦄ ⊢ T1 ⬌* T2 → ⦃G, L⦄ ⊢ U1 ⬌* U2.
+#G #L #K #d #e #HLK #T1 #U1 #HTU1 #T2 #U2 #HTU2 #HT12
elim (cpcs_inv_cprs … HT12) -HT12 #T #HT1 #HT2
elim (lift_total T d e) #U #HTU
lapply (cprs_lift … HT1 … HLK … HTU1 … HTU) -T1 #HU1
lapply (cprs_lift … HT2 … HLK … HTU2 … HTU) -K -T2 -T -d -e /2 width=3/
qed.
-lemma cpcs_strip: ∀L,T1,T. ⦃G, L⦄ ⊢ T ⬌* T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌ T2 →
+lemma cpcs_strip: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T ⬌* T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌ T2 →
∃∃T0. ⦃G, L⦄ ⊢ T1 ⬌ T0 & ⦃G, L⦄ ⊢ T2 ⬌* T0.
-#L #T1 #T @TC_strip1 /2 width=3/ qed-.
+#G #L #T1 #T @TC_strip1 /2 width=3 by cpc_conf/ qed-.
(* More inversion lemmas ****************************************************)
-lemma cpcs_inv_abst_sn: ∀a1,a2,L,W1,W2,T1,T2. ⦃G, L⦄ ⊢ ⓛ{a1}W1.T1 ⬌* ⓛ{a2}W2.T2 →
- ∧∧ ⦃G, L⦄ ⊢ W1 ⬌* W2 & L.ⓛW1 ⊢ T1 ⬌* T2 & a1 = a2.
-#a1 #a2 #L #W1 #W2 #T1 #T2 #H
+lemma cpcs_inv_abst_sn: ∀a1,a2,G,L,W1,W2,T1,T2. ⦃G, L⦄ ⊢ ⓛ{a1}W1.T1 ⬌* ⓛ{a2}W2.T2 →
+ ∧∧ ⦃G, L⦄ ⊢ W1 ⬌* W2 & ⦃G, L.ⓛW1⦄ ⊢ T1 ⬌* T2 & a1 = a2.
+#a1 #a2 #G #L #W1 #W2 #T1 #T2 #H
elim (cpcs_inv_cprs … H) -H #T #H1 #H2
elim (cprs_inv_abst1 … H1) -H1 #W0 #T0 #HW10 #HT10 #H destruct
elim (cprs_inv_abst1 … H2) -H2 #W #T #HW2 #HT2 #H destruct
/4 width=3 by and3_intro, cprs_div, cpcs_cprs_div, cpcs_sym/
qed-.
-lemma cpcs_inv_abst_dx: ∀a1,a2,L,W1,W2,T1,T2. ⦃G, L⦄ ⊢ ⓛ{a1}W1.T1 ⬌* ⓛ{a2}W2.T2 →
- ∧∧ ⦃G, L⦄ ⊢ W1 ⬌* W2 & L. ⓛW2 ⊢ T1 ⬌* T2 & a1 = a2.
-#a1 #a2 #L #W1 #W2 #T1 #T2 #HT12
+lemma cpcs_inv_abst_dx: ∀a1,a2,G,L,W1,W2,T1,T2. ⦃G, L⦄ ⊢ ⓛ{a1}W1.T1 ⬌* ⓛ{a2}W2.T2 →
+ ∧∧ ⦃G, L⦄ ⊢ W1 ⬌* W2 & ⦃G, L.ⓛW2⦄ ⊢ T1 ⬌* T2 & a1 = a2.
+#a1 #a2 #G #L #W1 #W2 #T1 #T2 #HT12
lapply (cpcs_sym … HT12) -HT12 #HT12
elim (cpcs_inv_abst_sn … HT12) -HT12 /3 width=1/
qed-.
(* Main properties **********************************************************)
(* Basic_1: was pc3_t *)
-theorem cpcs_trans: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #HT1 #T2 @(trans_TC … HT1) qed-.
+theorem cpcs_trans: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #HT1 #T2 @(trans_TC … HT1) qed-.
-theorem cpcs_canc_sn: ∀L,T,T1,T2. ⦃G, L⦄ ⊢ T ⬌* T1 → ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+theorem cpcs_canc_sn: ∀G,L,T,T1,T2. ⦃G, L⦄ ⊢ T ⬌* T1 → ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3 by cpcs_trans, cpcs_sym/ qed-. (**) (* /3 width=3/ is too slow *)
-theorem cpcs_canc_dx: ∀L,T,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T2 ⬌* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+theorem cpcs_canc_dx: ∀G,L,T,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T2 ⬌* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3 by cpcs_trans, cpcs_sym/ qed-. (**) (* /3 width=3/ is too slow *)
-lemma cpcs_bind1: ∀a,I,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ∀T1,T2. L.ⓑ{I}V1 ⊢ T1 ⬌* T2 →
+lemma cpcs_bind1: ∀a,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 →
+ ∀T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬌* T2 →
⦃G, L⦄ ⊢ ⓑ{a,I}V1. T1 ⬌* ⓑ{a,I}V2. T2.
-#a #I #L #V1 #V2 #HV12 #T1 #T2 #HT12
+#a #I #G #L #V1 #V2 #HV12 #T1 #T2 #HT12
@(cpcs_trans … (ⓑ{a,I}V1.T2)) /2 width=1/
qed.
-lemma cpcs_bind2: ∀a,I,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 → ∀T1,T2. L.ⓑ{I}V2 ⊢ T1 ⬌* T2 →
+lemma cpcs_bind2: ∀a,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬌* V2 →
+ ∀T1,T2. ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ⬌* T2 →
⦃G, L⦄ ⊢ ⓑ{a,I}V1. T1 ⬌* ⓑ{a,I}V2. T2.
-#a #I #L #V1 #V2 #HV12 #T1 #T2 #HT12
+#a #I #G #L #V1 #V2 #HV12 #T1 #T2 #HT12
@(cpcs_trans … (ⓑ{a,I}V2.T1)) /2 width=1/
qed.
(* Basic_1: was: pc3_wcpr0 *)
-lemma lpr_cpcs_conf: ∀L1,L2. L1 ⊢ ➡ L2 → ∀T1,T2. L1 ⊢ T1 ⬌* T2 → L2 ⊢ T1 ⬌* T2.
-#L1 #L2 #HL12 #T1 #T2 #H
+lemma lpr_cpcs_conf: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 →
+ ∀T1,T2. ⦃G, L1⦄ ⊢ T1 ⬌* T2 → ⦃G, L2⦄ ⊢ T1 ⬌* T2.
+#G #L1 #L2 #HL12 #T1 #T2 #H
elim (cpcs_inv_cprs … H) -H /3 width=5 by cpcs_canc_dx, lpr_cprs_conf/
qed-.
(* Properties about context sensitive computation on terms ******************)
(* Basic_1: was: pc3_pr3_r *)
-lemma cpcs_cprs_dx: ∀L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T2 #H @(cprs_ind … H) -T2 /width=1/ /3 width=3/
+lemma cpcs_cprs_dx: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T2 #H @(cprs_ind … H) -T2 /width=1/ /3 width=3/
qed.
(* Basic_1: was: pc3_pr3_x *)
-lemma cpcs_cprs_sn: ∀L,T1,T2. ⦃G, L⦄ ⊢ T2 ➡* T1 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T2 #H @(cprs_ind_dx … H) -T2 /width=1/ /3 width=3/
+lemma cpcs_cprs_sn: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T2 ➡* T1 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T2 #H @(cprs_ind_dx … H) -T2 /width=1/ /3 width=3/
qed.
-lemma cpcs_cprs_strap1: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #HT1 #T2 #H @(cprs_ind … H) -T2 /width=1/ /2 width=3/
+lemma cpcs_cprs_strap1: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #HT1 #T2 #H @(cprs_ind … H) -T2 /width=1/ /2 width=3/
qed.
-lemma cpcs_cprs_strap2: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #H #T2 #HT2 @(cprs_ind_dx … H) -T1 /width=1/ /2 width=3/
+lemma cpcs_cprs_strap2: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #H #T2 #HT2 @(cprs_ind_dx … H) -T1 /width=1/ /2 width=3/
qed.
-lemma cpcs_cprs_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2 /width=1/ /2 width=3/
+lemma cpcs_cprs_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2 /width=1/ /2 width=3/
qed.
(* Basic_1: was: pc3_pr3_conf *)
-lemma cpcs_cprs_conf: ∀L,T1,T. ⦃G, L⦄ ⊢ T ➡* T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #H #T2 #HT2 @(cprs_ind … H) -T1 /width=1/ /2 width=3/
+lemma cpcs_cprs_conf: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T ➡* T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #H #T2 #HT2 @(cprs_ind … H) -T1 /width=1/ /2 width=3/
qed.
(* Basic_1: was: pc3_pr3_t *)
(* Basic_1: note: pc3_pr3_t should be renamed *)
-lemma cprs_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2 /2 width=1/ /2 width=3/
+lemma cprs_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+#G #L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2 /2 width=1/ /2 width=3/
qed.
-lemma cprs_cpr_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cprs_cpr_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=5 by cpr_cprs, cprs_div/ qed-.
-lemma cpr_cprs_div: ∀L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
+lemma cpr_cprs_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/3 width=3 by cpr_cprs, cprs_div/ qed-.