lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))).
intros (R L x y z);
lapply (modular_mjp ?? x (y ∨ z)) as H1;
-apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z)))); [2: apply feq_plusr; apply H1;] clear H1;
+apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? (feq_plusr ???? H1)); clear H1;
apply (eq_trans ?? ? ?? (plus_comm ???));
apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ?? (plus_assoc ????));
apply (eq_trans ?? (0+μ(x∧(y∨z))) ?? (opp_inverse ??));
lapply (modular_mjp ?? x (y ∧ z)) as H1;
apply (eq_trans ?? (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1;
apply (eq_trans ?? ? ?? (plus_comm ???));
-apply (eq_trans ?? (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z))); [2: apply eq_sym; apply plus_assoc]
-apply (eq_trans ?? (0+ μ(x∨y∧z))); [2: apply feq_plusr; apply eq_sym; apply opp_inverse]
+apply (eq_trans ?? (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ?? (plus_assoc ????));
+apply (eq_trans ?? (0+ μ(x∨y∧z)) ?? (opp_inverse ??));
apply eq_sym; apply zero_neutral;
qed.