Appl) (lifts (S O) O ts) (lift (S O) O t) t0)) (lifts (S O) O (TApp ts t))
(lifts_tapp (S O) O t ts))))))))))) vs))).
+theorem pr3_iso_beta:
+ \forall (v: T).(\forall (w: T).(\forall (t: T).(let u1 \def (THead (Flat
+Appl) v (THead (Bind Abst) w t)) in (\forall (c: C).(\forall (u2: T).((pr3 c
+u1 u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to (pr3 c (THead (Bind
+Abbr) v t) u2))))))))
+\def
+ \lambda (v: T).(\lambda (w: T).(\lambda (t: T).(\lambda (c: C).(\lambda (u2:
+T).(\lambda (H: (pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t))
+u2)).(\lambda (H0: (((iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2)
+\to (\forall (P: Prop).P)))).(let H1 \def (pr3_gen_appl c v (THead (Bind
+Abst) w t) u2 H) in (or3_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
+T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c v
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c (THead (Bind Abst) w t) t2))))
+(ex4_4 T T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v u3))))) (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind Abst)
+w t) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind
+b) u) z1 t2)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind Abst) w t) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr3 c v u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b) y2) z1 z2)))))))) (pr3 c
+(THead (Bind Abbr) v t) u2) (\lambda (H2: (ex3_2 T T (\lambda (u3:
+T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(pr3 c v u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c
+(THead (Bind Abst) w t) t2))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr3 c v u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c (THead (Bind Abst)
+w t) t2))) (pr3 c (THead (Bind Abbr) v t) u2) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H3: (eq T u2 (THead (Flat Appl) x0 x1))).(\lambda (_: (pr3 c v
+x0)).(\lambda (_: (pr3 c (THead (Bind Abst) w t) x1)).(let H6 \def (eq_ind T
+u2 (\lambda (t0: T).((iso (THead (Flat Appl) v (THead (Bind Abst) w t)) t0)
+\to (\forall (P: Prop).P))) H0 (THead (Flat Appl) x0 x1) H3) in (eq_ind_r T
+(THead (Flat Appl) x0 x1) (\lambda (t0: T).(pr3 c (THead (Bind Abbr) v t)
+t0)) (H6 (iso_head v x0 (THead (Bind Abst) w t) x1 (Flat Appl)) (pr3 c (THead
+(Bind Abbr) v t) (THead (Flat Appl) x0 x1))) u2 H3))))))) H2)) (\lambda (H2:
+(ex4_4 T T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v u3))))) (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind Abst)
+w t) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind
+b) u) z1 t2))))))))).(ex4_4_ind T T T T (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind Abbr) u3 t2) u2)))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v
+u3))))) (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(pr3 c (THead (Bind Abst) w t) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
+(u: T).(pr3 (CHead c (Bind b) u) z1 t2))))))) (pr3 c (THead (Bind Abbr) v t)
+u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3:
+T).(\lambda (H3: (pr3 c (THead (Bind Abbr) x2 x3) u2)).(\lambda (H4: (pr3 c v
+x2)).(\lambda (H5: (pr3 c (THead (Bind Abst) w t) (THead (Bind Abst) x0
+x1))).(\lambda (H6: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b)
+u) x1 x3))))).(let H7 \def (pr3_gen_abst c w t (THead (Bind Abst) x0 x1) H5)
+in (ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind Abst)
+x0 x1) (THead (Bind Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c w
+u3))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3
+(CHead c (Bind b) u) t t2))))) (pr3 c (THead (Bind Abbr) v t) u2) (\lambda
+(x4: T).(\lambda (x5: T).(\lambda (H8: (eq T (THead (Bind Abst) x0 x1) (THead
+(Bind Abst) x4 x5))).(\lambda (H9: (pr3 c w x4)).(\lambda (H10: ((\forall (b:
+B).(\forall (u: T).(pr3 (CHead c (Bind b) u) t x5))))).(let H11 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ t0 _) \Rightarrow t0]))
+(THead (Bind Abst) x0 x1) (THead (Bind Abst) x4 x5) H8) in ((let H12 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow x1 | (TLRef _) \Rightarrow x1 | (THead _ _ t0)
+\Rightarrow t0])) (THead (Bind Abst) x0 x1) (THead (Bind Abst) x4 x5) H8) in
+(\lambda (H13: (eq T x0 x4)).(let H14 \def (eq_ind_r T x5 (\lambda (t0:
+T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) t t0)))) H10 x1
+H12) in (let H15 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 c w t0)) H9 x0
+H13) in (pr3_t (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) v t) c
+(pr3_head_12 c v x2 H4 (Bind Abbr) t x3 (pr3_t x1 t (CHead c (Bind Abbr) x2)
+(H14 Abbr x2) x3 (H6 Abbr x2))) u2 H3))))) H11))))))) H7)))))))))) H2))
+(\lambda (H2: (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst))))))))
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(pr3 c (THead (Bind Abst) w t) (THead (Bind b) y1
+z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2:
+T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) y2 (THead (Flat
+Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr3 (CHead c (Bind b) y2) z1 z2))))))))).(ex6_6_ind B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c
+(THead (Bind Abst) w t) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u3: T).(\lambda
+(y2: T).(pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u3) z2))
+u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v u3))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr3 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b)
+y2) z1 z2))))))) (pr3 c (THead (Bind Abbr) v t) u2) (\lambda (x0: B).(\lambda
+(x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5:
+T).(\lambda (H3: (not (eq B x0 Abst))).(\lambda (H4: (pr3 c (THead (Bind
+Abst) w t) (THead (Bind x0) x1 x2))).(\lambda (H5: (pr3 c (THead (Bind x0) x5
+(THead (Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda (_: (pr3 c v
+x4)).(\lambda (_: (pr3 c x1 x5)).(\lambda (H8: (pr3 (CHead c (Bind x0) x5) x2
+x3)).(let H9 \def (pr3_gen_abst c w t (THead (Bind x0) x1 x2) H4) in
+(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind x0) x1
+x2) (THead (Bind Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c w
+u3))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3
+(CHead c (Bind b) u) t t2))))) (pr3 c (THead (Bind Abbr) v t) u2) (\lambda
+(x6: T).(\lambda (x7: T).(\lambda (H10: (eq T (THead (Bind x0) x1 x2) (THead
+(Bind Abst) x6 x7))).(\lambda (H11: (pr3 c w x6)).(\lambda (H12: ((\forall
+(b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) t x7))))).(let H13 \def
+(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
+[(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b)
+\Rightarrow b | (Flat _) \Rightarrow x0])])) (THead (Bind x0) x1 x2) (THead
+(Bind Abst) x6 x7) H10) in ((let H14 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x1 | (TLRef _)
+\Rightarrow x1 | (THead _ t0 _) \Rightarrow t0])) (THead (Bind x0) x1 x2)
+(THead (Bind Abst) x6 x7) H10) in ((let H15 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x2 |
+(TLRef _) \Rightarrow x2 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind x0)
+x1 x2) (THead (Bind Abst) x6 x7) H10) in (\lambda (H16: (eq T x1
+x6)).(\lambda (H17: (eq B x0 Abst)).(let H18 \def (eq_ind_r T x7 (\lambda
+(t0: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) t t0))))
+H12 x2 H15) in (let H19 \def (eq_ind_r T x6 (\lambda (t0: T).(pr3 c w t0))
+H11 x1 H16) in (let H20 \def (eq_ind B x0 (\lambda (b: B).(pr3 (CHead c (Bind
+b) x5) x2 x3)) H8 Abst H17) in (let H21 \def (eq_ind B x0 (\lambda (b:
+B).(pr3 c (THead (Bind b) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) u2))
+H5 Abst H17) in (let H22 \def (eq_ind B x0 (\lambda (b: B).(not (eq B b
+Abst))) H3 Abst H17) in (let H23 \def (match (H22 (refl_equal B Abst)) in
+False return (\lambda (_: False).(pr3 c (THead (Bind Abbr) v t) u2)) with [])
+in H23))))))))) H14)) H13))))))) H9)))))))))))))) H2)) H1)))))))).
+
+theorem pr3_iso_appls_beta:
+ \forall (us: TList).(\forall (v: T).(\forall (w: T).(\forall (t: T).(let u1
+\def (THeads (Flat Appl) us (THead (Flat Appl) v (THead (Bind Abst) w t))) in
+(\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to
+(\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) us (THead (Bind Abbr)
+v t)) u2)))))))))
+\def
+ \lambda (us: TList).(TList_ind (\lambda (t: TList).(\forall (v: T).(\forall
+(w: T).(\forall (t0: T).(let u1 \def (THeads (Flat Appl) t (THead (Flat Appl)
+v (THead (Bind Abst) w t0))) in (\forall (c: C).(\forall (u2: T).((pr3 c u1
+u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to (pr3 c (THeads (Flat
+Appl) t (THead (Bind Abbr) v t0)) u2)))))))))) (\lambda (v: T).(\lambda (w:
+T).(\lambda (t: T).(\lambda (c: C).(\lambda (u2: T).(\lambda (H: (pr3 c
+(THead (Flat Appl) v (THead (Bind Abst) w t)) u2)).(\lambda (H0: (((iso
+(THead (Flat Appl) v (THead (Bind Abst) w t)) u2) \to (\forall (P:
+Prop).P)))).(pr3_iso_beta v w t c u2 H H0)))))))) (\lambda (t: T).(\lambda
+(t0: TList).(\lambda (H: ((\forall (v: T).(\forall (w: T).(\forall (t1:
+T).(\forall (c: C).(\forall (u2: T).((pr3 c (THeads (Flat Appl) t0 (THead
+(Flat Appl) v (THead (Bind Abst) w t1))) u2) \to ((((iso (THeads (Flat Appl)
+t0 (THead (Flat Appl) v (THead (Bind Abst) w t1))) u2) \to (\forall (P:
+Prop).P))) \to (pr3 c (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))
+u2)))))))))).(\lambda (v: T).(\lambda (w: T).(\lambda (t1: T).(\lambda (c:
+C).(\lambda (u2: T).(\lambda (H0: (pr3 c (THead (Flat Appl) t (THeads (Flat
+Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t1)))) u2)).(\lambda (H1:
+(((iso (THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Flat Appl) v
+(THead (Bind Abst) w t1)))) u2) \to (\forall (P: Prop).P)))).(let H2 \def
+(pr3_gen_appl c t (THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind
+Abst) w t1))) u2 H0) in (or3_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl)
+t0 (THead (Flat Appl) v (THead (Bind Abst) w t1))) t2)))) (ex4_4 T T T T
+(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c
+(THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat
+Appl) v (THead (Bind Abst) w t1))) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b:
+B).(\forall (u: T).(pr3 (CHead c (Bind b) u) z1 t2)))))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c
+(THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t1))) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr3 c t u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b) y2) z1 z2)))))))) (pr3 c
+(THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) u2)
+(\lambda (H3: (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead
+(Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t u3)))
+(\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat
+Appl) v (THead (Bind Abst) w t1))) t2))))).(ex3_2_ind T T (\lambda (u3:
+T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c
+(THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t1))) t2)))
+(pr3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1)))
+u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (eq T u2 (THead (Flat
+Appl) x0 x1))).(\lambda (_: (pr3 c t x0)).(\lambda (_: (pr3 c (THeads (Flat
+Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t1))) x1)).(let H7 \def
+(eq_ind T u2 (\lambda (t2: T).((iso (THead (Flat Appl) t (THeads (Flat Appl)
+t0 (THead (Flat Appl) v (THead (Bind Abst) w t1)))) t2) \to (\forall (P:
+Prop).P))) H1 (THead (Flat Appl) x0 x1) H4) in (eq_ind_r T (THead (Flat Appl)
+x0 x1) (\lambda (t2: T).(pr3 c (THead (Flat Appl) t (THeads (Flat Appl) t0
+(THead (Bind Abbr) v t1))) t2)) (H7 (iso_head t x0 (THeads (Flat Appl) t0
+(THead (Flat Appl) v (THead (Bind Abst) w t1))) x1 (Flat Appl)) (pr3 c (THead
+(Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) (THead (Flat
+Appl) x0 x1))) u2 H4))))))) H3)) (\lambda (H3: (ex4_4 T T T T (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind
+Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat
+Appl) v (THead (Bind Abst) w t1))) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b:
+B).(\forall (u: T).(pr3 (CHead c (Bind b) u) z1 t2))))))))).(ex4_4_ind T T T
+T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c
+(THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat
+Appl) v (THead (Bind Abst) w t1))) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b:
+B).(\forall (u: T).(pr3 (CHead c (Bind b) u) z1 t2))))))) (pr3 c (THead (Flat
+Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) u2) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (pr3 c
+(THead (Bind Abbr) x2 x3) u2)).(\lambda (H5: (pr3 c t x2)).(\lambda (H6: (pr3
+c (THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t1)))
+(THead (Bind Abst) x0 x1))).(\lambda (H7: ((\forall (b: B).(\forall (u:
+T).(pr3 (CHead c (Bind b) u) x1 x3))))).(pr3_t (THead (Bind Abbr) t x1)
+(THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) c
+(pr3_t (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) (THead (Flat Appl) t
+(THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) c (pr3_thin_dx c (THeads
+(Flat Appl) t0 (THead (Bind Abbr) v t1)) (THead (Bind Abst) x0 x1) (H v w t1
+c (THead (Bind Abst) x0 x1) H6 (\lambda (H8: (iso (THeads (Flat Appl) t0
+(THead (Flat Appl) v (THead (Bind Abst) w t1))) (THead (Bind Abst) x0
+x1))).(\lambda (P: Prop).(iso_flats_flat_bind_false Appl Appl Abst x0 v x1
+(THead (Bind Abst) w t1) t0 H8 P)))) t Appl) (THead (Bind Abbr) t x1)
+(pr3_pr2 c (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) (THead (Bind Abbr)
+t x1) (pr2_free c (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) (THead
+(Bind Abbr) t x1) (pr0_beta x0 t t (pr0_refl t) x1 x1 (pr0_refl x1))))) u2
+(pr3_t (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) t x1) c (pr3_head_12 c t
+x2 H5 (Bind Abbr) x1 x3 (H7 Abbr x2)) u2 H4)))))))))) H3)) (\lambda (H3:
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind Abst)
+w t1))) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(pr3 c t u3))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b) y2) z1
+z2))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (THead (Flat
+Appl) v (THead (Bind Abst) w t1))) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u3: T).(\lambda
+(y2: T).(pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u3) z2))
+u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr3 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b)
+y2) z1 z2))))))) (pr3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (THead
+(Bind Abbr) v t1))) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2:
+T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H4: (not (eq
+B x0 Abst))).(\lambda (H5: (pr3 c (THeads (Flat Appl) t0 (THead (Flat Appl) v
+(THead (Bind Abst) w t1))) (THead (Bind x0) x1 x2))).(\lambda (H6: (pr3 c
+(THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda
+(H7: (pr3 c t x4)).(\lambda (H8: (pr3 c x1 x5)).(\lambda (H9: (pr3 (CHead c
+(Bind x0) x5) x2 x3)).(pr3_t (THead (Bind x0) x1 (THead (Flat Appl) (lift (S
+O) O x4) x2)) (THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr)
+v t1))) c (pr3_t (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2))
+(THead (Flat Appl) t (THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) c
+(pr3_t (THead (Flat Appl) t (THead (Bind x0) x1 x2)) (THead (Flat Appl) t
+(THeads (Flat Appl) t0 (THead (Bind Abbr) v t1))) c (pr3_thin_dx c (THeads
+(Flat Appl) t0 (THead (Bind Abbr) v t1)) (THead (Bind x0) x1 x2) (H v w t1 c
+(THead (Bind x0) x1 x2) H5 (\lambda (H10: (iso (THeads (Flat Appl) t0 (THead
+(Flat Appl) v (THead (Bind Abst) w t1))) (THead (Bind x0) x1 x2))).(\lambda
+(P: Prop).(iso_flats_flat_bind_false Appl Appl x0 x1 v x2 (THead (Bind Abst)
+w t1) t0 H10 P)))) t Appl) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O)
+O t) x2)) (pr3_pr2 c (THead (Flat Appl) t (THead (Bind x0) x1 x2)) (THead
+(Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (pr2_free c (THead
+(Flat Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x1 (THead (Flat Appl)
+(lift (S O) O t) x2)) (pr0_upsilon x0 H4 t t (pr0_refl t) x1 x1 (pr0_refl x1)
+x2 x2 (pr0_refl x2))))) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O
+x4) x2)) (pr3_head_12 c x1 x1 (pr3_refl c x1) (Bind x0) (THead (Flat Appl)
+(lift (S O) O t) x2) (THead (Flat Appl) (lift (S O) O x4) x2) (pr3_head_12
+(CHead c (Bind x0) x1) (lift (S O) O t) (lift (S O) O x4) (pr3_lift (CHead c
+(Bind x0) x1) c (S O) O (drop_drop (Bind x0) O c c (drop_refl c) x1) t x4 H7)
+(Flat Appl) x2 x2 (pr3_refl (CHead (CHead c (Bind x0) x1) (Flat Appl) (lift
+(S O) O x4)) x2)))) u2 (pr3_t (THead (Bind x0) x5 (THead (Flat Appl) (lift (S
+O) O x4) x3)) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) c
+(pr3_head_12 c x1 x5 H8 (Bind x0) (THead (Flat Appl) (lift (S O) O x4) x2)
+(THead (Flat Appl) (lift (S O) O x4) x3) (pr3_thin_dx (CHead c (Bind x0) x5)
+x2 x3 H9 (lift (S O) O x4) Appl)) u2 H6)))))))))))))) H3)) H2)))))))))))) us).
+
theorem sn3_cpr3_trans:
\forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall
(k: K).(\forall (t: T).((sn3 (CHead c k u1) t) \to (sn3 (CHead c k u2)
(S O) O t3) H9) c (drop_drop (Bind b) O c c (drop_refl c) t1))) H8))))))))))
t H3)))))) u H0))))).
+theorem sn3_beta:
+ \forall (c: C).(\forall (v: T).(\forall (t: T).((sn3 c (THead (Bind Abbr) v
+t)) \to (\forall (w: T).((sn3 c w) \to (sn3 c (THead (Flat Appl) v (THead
+(Bind Abst) w t))))))))
+\def
+ \lambda (c: C).(\lambda (v: T).(\lambda (t: T).(\lambda (H: (sn3 c (THead
+(Bind Abbr) v t))).(insert_eq T (THead (Bind Abbr) v t) (\lambda (t0: T).(sn3
+c t0)) (\forall (w: T).((sn3 c w) \to (sn3 c (THead (Flat Appl) v (THead
+(Bind Abst) w t))))) (\lambda (y: T).(\lambda (H0: (sn3 c y)).(unintro T t
+(\lambda (t0: T).((eq T y (THead (Bind Abbr) v t0)) \to (\forall (w: T).((sn3
+c w) \to (sn3 c (THead (Flat Appl) v (THead (Bind Abst) w t0))))))) (unintro
+T v (\lambda (t0: T).(\forall (x: T).((eq T y (THead (Bind Abbr) t0 x)) \to
+(\forall (w: T).((sn3 c w) \to (sn3 c (THead (Flat Appl) t0 (THead (Bind
+Abst) w x)))))))) (sn3_ind c (\lambda (t0: T).(\forall (x: T).(\forall (x0:
+T).((eq T t0 (THead (Bind Abbr) x x0)) \to (\forall (w: T).((sn3 c w) \to
+(sn3 c (THead (Flat Appl) x (THead (Bind Abst) w x0))))))))) (\lambda (t1:
+T).(\lambda (H1: ((\forall (t2: T).((((eq T t1 t2) \to (\forall (P:
+Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c t2)))))).(\lambda (H2: ((\forall
+(t2: T).((((eq T t1 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to
+(\forall (x: T).(\forall (x0: T).((eq T t2 (THead (Bind Abbr) x x0)) \to
+(\forall (w: T).((sn3 c w) \to (sn3 c (THead (Flat Appl) x (THead (Bind Abst)
+w x0))))))))))))).(\lambda (x: T).(\lambda (x0: T).(\lambda (H3: (eq T t1
+(THead (Bind Abbr) x x0))).(\lambda (w: T).(\lambda (H4: (sn3 c w)).(let H5
+\def (eq_ind T t1 (\lambda (t0: T).(\forall (t2: T).((((eq T t0 t2) \to
+(\forall (P: Prop).P))) \to ((pr3 c t0 t2) \to (\forall (x1: T).(\forall (x2:
+T).((eq T t2 (THead (Bind Abbr) x1 x2)) \to (\forall (w0: T).((sn3 c w0) \to
+(sn3 c (THead (Flat Appl) x1 (THead (Bind Abst) w0 x2)))))))))))) H2 (THead
+(Bind Abbr) x x0) H3) in (let H6 \def (eq_ind T t1 (\lambda (t0: T).(\forall
+(t2: T).((((eq T t0 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t0 t2) \to
+(sn3 c t2))))) H1 (THead (Bind Abbr) x x0) H3) in (sn3_ind c (\lambda (t0:
+T).(sn3 c (THead (Flat Appl) x (THead (Bind Abst) t0 x0)))) (\lambda (t2:
+T).(\lambda (H7: ((\forall (t3: T).((((eq T t2 t3) \to (\forall (P:
+Prop).P))) \to ((pr3 c t2 t3) \to (sn3 c t3)))))).(\lambda (H8: ((\forall
+(t3: T).((((eq T t2 t3) \to (\forall (P: Prop).P))) \to ((pr3 c t2 t3) \to
+(sn3 c (THead (Flat Appl) x (THead (Bind Abst) t3 x0)))))))).(sn3_pr2_intro c
+(THead (Flat Appl) x (THead (Bind Abst) t2 x0)) (\lambda (t3: T).(\lambda
+(H9: (((eq T (THead (Flat Appl) x (THead (Bind Abst) t2 x0)) t3) \to (\forall
+(P: Prop).P)))).(\lambda (H10: (pr2 c (THead (Flat Appl) x (THead (Bind Abst)
+t2 x0)) t3)).(let H11 \def (pr2_gen_appl c x (THead (Bind Abst) t2 x0) t3
+H10) in (or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead
+(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind Abst) t2 x0) t4))))
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T (THead (Bind Abst) t2 x0) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead
+(Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind
+b) u) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) t2 x0) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind
+b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (sn3 c t3)
+(\lambda (H12: (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead
+(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind Abst) t2 x0)
+t4))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead
+(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind Abst) t2 x0) t4))) (sn3
+c t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (H13: (eq T t3 (THead (Flat
+Appl) x1 x2))).(\lambda (H14: (pr2 c x x1)).(\lambda (H15: (pr2 c (THead
+(Bind Abst) t2 x0) x2)).(let H16 \def (eq_ind T t3 (\lambda (t0: T).((eq T
+(THead (Flat Appl) x (THead (Bind Abst) t2 x0)) t0) \to (\forall (P:
+Prop).P))) H9 (THead (Flat Appl) x1 x2) H13) in (eq_ind_r T (THead (Flat
+Appl) x1 x2) (\lambda (t0: T).(sn3 c t0)) (let H17 \def (pr2_gen_abst c t2 x0
+x2 H15) in (ex3_2_ind T T (\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead
+(Bind Abst) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c t2 u2)))
+(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead
+c (Bind b) u) x0 t4))))) (sn3 c (THead (Flat Appl) x1 x2)) (\lambda (x3:
+T).(\lambda (x4: T).(\lambda (H18: (eq T x2 (THead (Bind Abst) x3
+x4))).(\lambda (H19: (pr2 c t2 x3)).(\lambda (H20: ((\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) x0 x4))))).(let H21 \def (eq_ind T x2
+(\lambda (t0: T).((eq T (THead (Flat Appl) x (THead (Bind Abst) t2 x0))
+(THead (Flat Appl) x1 t0)) \to (\forall (P: Prop).P))) H16 (THead (Bind Abst)
+x3 x4) H18) in (eq_ind_r T (THead (Bind Abst) x3 x4) (\lambda (t0: T).(sn3 c
+(THead (Flat Appl) x1 t0))) (let H_x \def (term_dec t2 x3) in (let H22 \def
+H_x in (or_ind (eq T t2 x3) ((eq T t2 x3) \to (\forall (P: Prop).P)) (sn3 c
+(THead (Flat Appl) x1 (THead (Bind Abst) x3 x4))) (\lambda (H23: (eq T t2
+x3)).(let H24 \def (eq_ind_r T x3 (\lambda (t0: T).((eq T (THead (Flat Appl)
+x (THead (Bind Abst) t2 x0)) (THead (Flat Appl) x1 (THead (Bind Abst) t0
+x4))) \to (\forall (P: Prop).P))) H21 t2 H23) in (let H25 \def (eq_ind_r T x3
+(\lambda (t0: T).(pr2 c t2 t0)) H19 t2 H23) in (eq_ind T t2 (\lambda (t0:
+T).(sn3 c (THead (Flat Appl) x1 (THead (Bind Abst) t0 x4)))) (let H_x0 \def
+(term_dec x x1) in (let H26 \def H_x0 in (or_ind (eq T x x1) ((eq T x x1) \to
+(\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x1 (THead (Bind Abst) t2
+x4))) (\lambda (H27: (eq T x x1)).(let H28 \def (eq_ind_r T x1 (\lambda (t0:
+T).((eq T (THead (Flat Appl) x (THead (Bind Abst) t2 x0)) (THead (Flat Appl)
+t0 (THead (Bind Abst) t2 x4))) \to (\forall (P: Prop).P))) H24 x H27) in (let
+H29 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H14 x H27) in (eq_ind
+T x (\lambda (t0: T).(sn3 c (THead (Flat Appl) t0 (THead (Bind Abst) t2
+x4)))) (let H_x1 \def (term_dec x0 x4) in (let H30 \def H_x1 in (or_ind (eq T
+x0 x4) ((eq T x0 x4) \to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x
+(THead (Bind Abst) t2 x4))) (\lambda (H31: (eq T x0 x4)).(let H32 \def
+(eq_ind_r T x4 (\lambda (t0: T).((eq T (THead (Flat Appl) x (THead (Bind
+Abst) t2 x0)) (THead (Flat Appl) x (THead (Bind Abst) t2 t0))) \to (\forall
+(P: Prop).P))) H28 x0 H31) in (let H33 \def (eq_ind_r T x4 (\lambda (t0:
+T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) x0 t0)))) H20 x0
+H31) in (eq_ind T x0 (\lambda (t0: T).(sn3 c (THead (Flat Appl) x (THead
+(Bind Abst) t2 t0)))) (H32 (refl_equal T (THead (Flat Appl) x (THead (Bind
+Abst) t2 x0))) (sn3 c (THead (Flat Appl) x (THead (Bind Abst) t2 x0)))) x4
+H31)))) (\lambda (H31: (((eq T x0 x4) \to (\forall (P: Prop).P)))).(H5 (THead
+(Bind Abbr) x x4) (\lambda (H32: (eq T (THead (Bind Abbr) x x0) (THead (Bind
+Abbr) x x4))).(\lambda (P: Prop).(let H33 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 |
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind
+Abbr) x x0) (THead (Bind Abbr) x x4) H32) in (let H34 \def (eq_ind_r T x4
+(\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) H31 x0 H33) in
+(let H35 \def (eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) x0 t0)))) H20 x0 H33) in (H34 (refl_equal T x0)
+P)))))) (pr3_pr2 c (THead (Bind Abbr) x x0) (THead (Bind Abbr) x x4)
+(pr2_head_2 c x x0 x4 (Bind Abbr) (H20 Abbr x))) x x4 (refl_equal T (THead
+(Bind Abbr) x x4)) t2 (sn3_sing c t2 H7))) H30))) x1 H27)))) (\lambda (H27:
+(((eq T x x1) \to (\forall (P: Prop).P)))).(H5 (THead (Bind Abbr) x1 x4)
+(\lambda (H28: (eq T (THead (Bind Abbr) x x0) (THead (Bind Abbr) x1
+x4))).(\lambda (P: Prop).(let H29 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x | (TLRef _)
+\Rightarrow x | (THead _ t0 _) \Rightarrow t0])) (THead (Bind Abbr) x x0)
+(THead (Bind Abbr) x1 x4) H28) in ((let H30 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 |
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind
+Abbr) x x0) (THead (Bind Abbr) x1 x4) H28) in (\lambda (H31: (eq T x
+x1)).(let H32 \def (eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) x0 t0)))) H20 x0 H30) in (let H33 \def
+(eq_ind_r T x1 (\lambda (t0: T).((eq T x t0) \to (\forall (P0: Prop).P0)))
+H27 x H31) in (let H34 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H14
+x H31) in (H33 (refl_equal T x) P)))))) H29)))) (pr3_head_12 c x x1 (pr3_pr2
+c x x1 H14) (Bind Abbr) x0 x4 (pr3_pr2 (CHead c (Bind Abbr) x1) x0 x4 (H20
+Abbr x1))) x1 x4 (refl_equal T (THead (Bind Abbr) x1 x4)) t2 (sn3_sing c t2
+H7))) H26))) x3 H23)))) (\lambda (H23: (((eq T t2 x3) \to (\forall (P:
+Prop).P)))).(let H_x0 \def (term_dec x x1) in (let H24 \def H_x0 in (or_ind
+(eq T x x1) ((eq T x x1) \to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl)
+x1 (THead (Bind Abst) x3 x4))) (\lambda (H25: (eq T x x1)).(let H26 \def
+(eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H14 x H25) in (eq_ind T x
+(\lambda (t0: T).(sn3 c (THead (Flat Appl) t0 (THead (Bind Abst) x3 x4))))
+(let H_x1 \def (term_dec x0 x4) in (let H27 \def H_x1 in (or_ind (eq T x0 x4)
+((eq T x0 x4) \to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x (THead
+(Bind Abst) x3 x4))) (\lambda (H28: (eq T x0 x4)).(let H29 \def (eq_ind_r T
+x4 (\lambda (t0: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+x0 t0)))) H20 x0 H28) in (eq_ind T x0 (\lambda (t0: T).(sn3 c (THead (Flat
+Appl) x (THead (Bind Abst) x3 t0)))) (H8 x3 H23 (pr3_pr2 c t2 x3 H19)) x4
+H28))) (\lambda (H28: (((eq T x0 x4) \to (\forall (P: Prop).P)))).(H5 (THead
+(Bind Abbr) x x4) (\lambda (H29: (eq T (THead (Bind Abbr) x x0) (THead (Bind
+Abbr) x x4))).(\lambda (P: Prop).(let H30 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 |
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind
+Abbr) x x0) (THead (Bind Abbr) x x4) H29) in (let H31 \def (eq_ind_r T x4
+(\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) H28 x0 H30) in
+(let H32 \def (eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) x0 t0)))) H20 x0 H30) in (H31 (refl_equal T x0)
+P)))))) (pr3_pr2 c (THead (Bind Abbr) x x0) (THead (Bind Abbr) x x4)
+(pr2_head_2 c x x0 x4 (Bind Abbr) (H20 Abbr x))) x x4 (refl_equal T (THead
+(Bind Abbr) x x4)) x3 (H7 x3 H23 (pr3_pr2 c t2 x3 H19)))) H27))) x1 H25)))
+(\lambda (H25: (((eq T x x1) \to (\forall (P: Prop).P)))).(H5 (THead (Bind
+Abbr) x1 x4) (\lambda (H26: (eq T (THead (Bind Abbr) x x0) (THead (Bind Abbr)
+x1 x4))).(\lambda (P: Prop).(let H27 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x | (TLRef _)
+\Rightarrow x | (THead _ t0 _) \Rightarrow t0])) (THead (Bind Abbr) x x0)
+(THead (Bind Abbr) x1 x4) H26) in ((let H28 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 |
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind
+Abbr) x x0) (THead (Bind Abbr) x1 x4) H26) in (\lambda (H29: (eq T x
+x1)).(let H30 \def (eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) x0 t0)))) H20 x0 H28) in (let H31 \def
+(eq_ind_r T x1 (\lambda (t0: T).((eq T x t0) \to (\forall (P0: Prop).P0)))
+H25 x H29) in (let H32 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H14
+x H29) in (H31 (refl_equal T x) P)))))) H27)))) (pr3_head_12 c x x1 (pr3_pr2
+c x x1 H14) (Bind Abbr) x0 x4 (pr3_pr2 (CHead c (Bind Abbr) x1) x0 x4 (H20
+Abbr x1))) x1 x4 (refl_equal T (THead (Bind Abbr) x1 x4)) x3 (H7 x3 H23
+(pr3_pr2 c t2 x3 H19)))) H24)))) H22))) x2 H18))))))) H17)) t3 H13)))))))
+H12)) (\lambda (H12: (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) t2 x0) (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t4))))))))).(ex4_4_ind T T T
+T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) t2 x0) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind
+Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+z1 t4))))))) (sn3 c t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (x3:
+T).(\lambda (x4: T).(\lambda (H13: (eq T (THead (Bind Abst) t2 x0) (THead
+(Bind Abst) x1 x2))).(\lambda (H14: (eq T t3 (THead (Bind Abbr) x3
+x4))).(\lambda (H15: (pr2 c x x3)).(\lambda (H16: ((\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) x2 x4))))).(let H17 \def (eq_ind T t3
+(\lambda (t0: T).((eq T (THead (Flat Appl) x (THead (Bind Abst) t2 x0)) t0)
+\to (\forall (P: Prop).P))) H9 (THead (Bind Abbr) x3 x4) H14) in (eq_ind_r T
+(THead (Bind Abbr) x3 x4) (\lambda (t0: T).(sn3 c t0)) (let H18 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t2 | (TLRef _) \Rightarrow t2 | (THead _ t0 _) \Rightarrow t0]))
+(THead (Bind Abst) t2 x0) (THead (Bind Abst) x1 x2) H13) in ((let H19 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _ t0)
+\Rightarrow t0])) (THead (Bind Abst) t2 x0) (THead (Bind Abst) x1 x2) H13) in
+(\lambda (_: (eq T t2 x1)).(let H21 \def (eq_ind_r T x2 (\lambda (t0:
+T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t0 x4)))) H16 x0
+H19) in (let H_x \def (term_dec x x3) in (let H22 \def H_x in (or_ind (eq T x
+x3) ((eq T x x3) \to (\forall (P: Prop).P)) (sn3 c (THead (Bind Abbr) x3 x4))
+(\lambda (H23: (eq T x x3)).(let H24 \def (eq_ind_r T x3 (\lambda (t0:
+T).(pr2 c x t0)) H15 x H23) in (eq_ind T x (\lambda (t0: T).(sn3 c (THead
+(Bind Abbr) t0 x4))) (let H_x0 \def (term_dec x0 x4) in (let H25 \def H_x0 in
+(or_ind (eq T x0 x4) ((eq T x0 x4) \to (\forall (P: Prop).P)) (sn3 c (THead
+(Bind Abbr) x x4)) (\lambda (H26: (eq T x0 x4)).(let H27 \def (eq_ind_r T x4
+(\lambda (t0: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) x0
+t0)))) H21 x0 H26) in (eq_ind T x0 (\lambda (t0: T).(sn3 c (THead (Bind Abbr)
+x t0))) (sn3_sing c (THead (Bind Abbr) x x0) H6) x4 H26))) (\lambda (H26:
+(((eq T x0 x4) \to (\forall (P: Prop).P)))).(H6 (THead (Bind Abbr) x x4)
+(\lambda (H27: (eq T (THead (Bind Abbr) x x0) (THead (Bind Abbr) x
+x4))).(\lambda (P: Prop).(let H28 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | (TLRef _)
+\Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind Abbr) x x0)
+(THead (Bind Abbr) x x4) H27) in (let H29 \def (eq_ind_r T x4 (\lambda (t0:
+T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) H26 x0 H28) in (let H30 \def
+(eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c
+(Bind b) u) x0 t0)))) H21 x0 H28) in (H29 (refl_equal T x0) P)))))) (pr3_pr2
+c (THead (Bind Abbr) x x0) (THead (Bind Abbr) x x4) (pr2_head_2 c x x0 x4
+(Bind Abbr) (H21 Abbr x))))) H25))) x3 H23))) (\lambda (H23: (((eq T x x3)
+\to (\forall (P: Prop).P)))).(H6 (THead (Bind Abbr) x3 x4) (\lambda (H24: (eq
+T (THead (Bind Abbr) x x0) (THead (Bind Abbr) x3 x4))).(\lambda (P:
+Prop).(let H25 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow x | (TLRef _) \Rightarrow x |
+(THead _ t0 _) \Rightarrow t0])) (THead (Bind Abbr) x x0) (THead (Bind Abbr)
+x3 x4) H24) in ((let H26 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | (TLRef _)
+\Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Bind Abbr) x x0)
+(THead (Bind Abbr) x3 x4) H24) in (\lambda (H27: (eq T x x3)).(let H28 \def
+(eq_ind_r T x4 (\lambda (t0: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c
+(Bind b) u) x0 t0)))) H21 x0 H26) in (let H29 \def (eq_ind_r T x3 (\lambda
+(t0: T).((eq T x t0) \to (\forall (P0: Prop).P0))) H23 x H27) in (let H30
+\def (eq_ind_r T x3 (\lambda (t0: T).(pr2 c x t0)) H15 x H27) in (H29
+(refl_equal T x) P)))))) H25)))) (pr3_head_12 c x x3 (pr3_pr2 c x x3 H15)
+(Bind Abbr) x0 x4 (pr3_pr2 (CHead c (Bind Abbr) x3) x0 x4 (H21 Abbr x3)))))
+H22)))))) H18)) t3 H14)))))))))) H12)) (\lambda (H12: (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) t2 x0) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) t2 x0) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind
+b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))) (sn3 c t3)
+(\lambda (x1: B).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda
+(x5: T).(\lambda (x6: T).(\lambda (H13: (not (eq B x1 Abst))).(\lambda (H14:
+(eq T (THead (Bind Abst) t2 x0) (THead (Bind x1) x2 x3))).(\lambda (H15: (eq
+T t3 (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))).(\lambda
+(_: (pr2 c x x5)).(\lambda (H17: (pr2 c x2 x6)).(\lambda (H18: (pr2 (CHead c
+(Bind x1) x6) x3 x4)).(let H19 \def (eq_ind T t3 (\lambda (t0: T).((eq T
+(THead (Flat Appl) x (THead (Bind Abst) t2 x0)) t0) \to (\forall (P:
+Prop).P))) H9 (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4))
+H15) in (eq_ind_r T (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5)
+x4)) (\lambda (t0: T).(sn3 c t0)) (let H20 \def (f_equal T B (\lambda (e:
+T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow Abst |
+(TLRef _) \Rightarrow Abst | (THead k _ _) \Rightarrow (match k in K return
+(\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow
+Abst])])) (THead (Bind Abst) t2 x0) (THead (Bind x1) x2 x3) H14) in ((let H21
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow t2 | (TLRef _) \Rightarrow t2 | (THead _ t0 _)
+\Rightarrow t0])) (THead (Bind Abst) t2 x0) (THead (Bind x1) x2 x3) H14) in
+((let H22 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _
+t0) \Rightarrow t0])) (THead (Bind Abst) t2 x0) (THead (Bind x1) x2 x3) H14)
+in (\lambda (H23: (eq T t2 x2)).(\lambda (H24: (eq B Abst x1)).(let H25 \def
+(eq_ind_r T x3 (\lambda (t0: T).(pr2 (CHead c (Bind x1) x6) t0 x4)) H18 x0
+H22) in (let H26 \def (eq_ind_r T x2 (\lambda (t0: T).(pr2 c t0 x6)) H17 t2
+H23) in (let H27 \def (eq_ind_r B x1 (\lambda (b: B).(pr2 (CHead c (Bind b)
+x6) x0 x4)) H25 Abst H24) in (let H28 \def (eq_ind_r B x1 (\lambda (b:
+B).(not (eq B b Abst))) H13 Abst H24) in (eq_ind B Abst (\lambda (b: B).(sn3
+c (THead (Bind b) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))) (let H29
+\def (match (H28 (refl_equal B Abst)) in False return (\lambda (_:
+False).(sn3 c (THead (Bind Abst) x6 (THead (Flat Appl) (lift (S O) O x5)
+x4)))) with []) in H29) x1 H24)))))))) H21)) H20)) t3 H15)))))))))))))) H12))
+H11))))))))) w H4))))))))))) y H0))))) H)))).
+
theorem nf3_appl_abbr:
\forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c
(CHead d (Bind Abbr) w)) \to (\forall (v: T).((sn3 c (THead (Flat Appl) v
x5) x4)))) x1 H25))))))) H22)) H21)) t3 H16)))))))))))))) H13))
H12)))))))))))))) y H4))))) H3))))))) u H0))))).
+theorem sn3_appl_beta:
+ \forall (c: C).(\forall (u: T).(\forall (v: T).(\forall (t: T).((sn3 c
+(THead (Flat Appl) u (THead (Bind Abbr) v t))) \to (\forall (w: T).((sn3 c w)
+\to (sn3 c (THead (Flat Appl) u (THead (Flat Appl) v (THead (Bind Abst) w
+t))))))))))
+\def
+ \lambda (c: C).(\lambda (u: T).(\lambda (v: T).(\lambda (t: T).(\lambda (H:
+(sn3 c (THead (Flat Appl) u (THead (Bind Abbr) v t)))).(\lambda (w:
+T).(\lambda (H0: (sn3 c w)).(let H1 \def (sn3_gen_flat Appl c u (THead (Bind
+Abbr) v t) H) in (and_ind (sn3 c u) (sn3 c (THead (Bind Abbr) v t)) (sn3 c
+(THead (Flat Appl) u (THead (Flat Appl) v (THead (Bind Abst) w t)))) (\lambda
+(H2: (sn3 c u)).(\lambda (H3: (sn3 c (THead (Bind Abbr) v t))).(sn3_appl_appl
+v (THead (Bind Abst) w t) c (sn3_beta c v t H3 w H0) u H2 (\lambda (u2:
+T).(\lambda (H4: (pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t))
+u2)).(\lambda (H5: (((iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2)
+\to (\forall (P: Prop).P)))).(sn3_pr3_trans c (THead (Flat Appl) u (THead
+(Bind Abbr) v t)) H (THead (Flat Appl) u u2) (pr3_thin_dx c (THead (Bind
+Abbr) v t) u2 (pr3_iso_beta v w t c u2 H4 H5) u Appl)))))))) H1)))))))).
+
theorem sn3_appls_bind:
\forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u:
T).((sn3 c u) \to (\forall (vs: TList).(\forall (t: T).((sn3 (CHead c (Bind
Appl) (lifts (S O) O (TCons t t0)) t1)) u2 H9 Appl)))))))))) H4))))))))
vs0))) vs)))))).
+theorem sn3_appls_beta:
+ \forall (c: C).(\forall (v: T).(\forall (t: T).(\forall (us: TList).((sn3 c
+(THeads (Flat Appl) us (THead (Bind Abbr) v t))) \to (\forall (w: T).((sn3 c
+w) \to (sn3 c (THeads (Flat Appl) us (THead (Flat Appl) v (THead (Bind Abst)
+w t))))))))))
+\def
+ \lambda (c: C).(\lambda (v: T).(\lambda (t: T).(\lambda (us:
+TList).(TList_ind (\lambda (t0: TList).((sn3 c (THeads (Flat Appl) t0 (THead
+(Bind Abbr) v t))) \to (\forall (w: T).((sn3 c w) \to (sn3 c (THeads (Flat
+Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t)))))))) (\lambda (H:
+(sn3 c (THead (Bind Abbr) v t))).(\lambda (w: T).(\lambda (H0: (sn3 c
+w)).(sn3_beta c v t H w H0)))) (\lambda (u: T).(\lambda (us0:
+TList).(TList_ind (\lambda (t0: TList).((((sn3 c (THeads (Flat Appl) t0
+(THead (Bind Abbr) v t))) \to (\forall (w: T).((sn3 c w) \to (sn3 c (THeads
+(Flat Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t)))))))) \to ((sn3
+c (THead (Flat Appl) u (THeads (Flat Appl) t0 (THead (Bind Abbr) v t)))) \to
+(\forall (w: T).((sn3 c w) \to (sn3 c (THead (Flat Appl) u (THeads (Flat
+Appl) t0 (THead (Flat Appl) v (THead (Bind Abst) w t)))))))))) (\lambda (_:
+(((sn3 c (THeads (Flat Appl) TNil (THead (Bind Abbr) v t))) \to (\forall (w:
+T).((sn3 c w) \to (sn3 c (THeads (Flat Appl) TNil (THead (Flat Appl) v (THead
+(Bind Abst) w t))))))))).(\lambda (H0: (sn3 c (THead (Flat Appl) u (THeads
+(Flat Appl) TNil (THead (Bind Abbr) v t))))).(\lambda (w: T).(\lambda (H1:
+(sn3 c w)).(sn3_appl_beta c u v t H0 w H1))))) (\lambda (t0: T).(\lambda (t1:
+TList).(\lambda (_: (((((sn3 c (THeads (Flat Appl) t1 (THead (Bind Abbr) v
+t))) \to (\forall (w: T).((sn3 c w) \to (sn3 c (THeads (Flat Appl) t1 (THead
+(Flat Appl) v (THead (Bind Abst) w t)))))))) \to ((sn3 c (THead (Flat Appl) u
+(THeads (Flat Appl) t1 (THead (Bind Abbr) v t)))) \to (\forall (w: T).((sn3 c
+w) \to (sn3 c (THead (Flat Appl) u (THeads (Flat Appl) t1 (THead (Flat Appl)
+v (THead (Bind Abst) w t))))))))))).(\lambda (H0: (((sn3 c (THeads (Flat
+Appl) (TCons t0 t1) (THead (Bind Abbr) v t))) \to (\forall (w: T).((sn3 c w)
+\to (sn3 c (THeads (Flat Appl) (TCons t0 t1) (THead (Flat Appl) v (THead
+(Bind Abst) w t))))))))).(\lambda (H1: (sn3 c (THead (Flat Appl) u (THeads
+(Flat Appl) (TCons t0 t1) (THead (Bind Abbr) v t))))).(\lambda (w:
+T).(\lambda (H2: (sn3 c w)).(let H3 \def (sn3_gen_flat Appl c u (THeads (Flat
+Appl) (TCons t0 t1) (THead (Bind Abbr) v t)) H1) in (and_ind (sn3 c u) (sn3 c
+(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind Abbr) v t)))) (sn3
+c (THead (Flat Appl) u (THeads (Flat Appl) (TCons t0 t1) (THead (Flat Appl) v
+(THead (Bind Abst) w t))))) (\lambda (H4: (sn3 c u)).(\lambda (H5: (sn3 c
+(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind Abbr) v
+t))))).(sn3_appl_appls t0 (THead (Flat Appl) v (THead (Bind Abst) w t)) t1 c
+(H0 H5 w H2) u H4 (\lambda (u2: T).(\lambda (H6: (pr3 c (THeads (Flat Appl)
+(TCons t0 t1) (THead (Flat Appl) v (THead (Bind Abst) w t))) u2)).(\lambda
+(H7: (((iso (THeads (Flat Appl) (TCons t0 t1) (THead (Flat Appl) v (THead
+(Bind Abst) w t))) u2) \to (\forall (P: Prop).P)))).(let H8 \def
+(pr3_iso_appls_beta (TCons t0 t1) v w t c u2 H6 H7) in (sn3_pr3_trans c
+(THead (Flat Appl) u (THeads (Flat Appl) (TCons t0 t1) (THead (Bind Abbr) v
+t))) H1 (THead (Flat Appl) u u2) (pr3_thin_dx c (THeads (Flat Appl) (TCons t0
+t1) (THead (Bind Abbr) v t)) u2 H8 u Appl))))))))) H3))))))))) us0))) us)))).
+
theorem sn3_appls_abbr:
\forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c
(CHead d (Bind Abbr) w)) \to (\forall (vs: TList).((sn3 c (THeads (Flat Appl)