module C = Cic
module I = CicInspect
-module D = Deannotate
module S = CicSubstitution
module TC = CicTypeChecker
module Un = CicUniv
(* helpers ******************************************************************)
-let cic = D.deannotate_term
-
let split2_last l1 l2 =
try
let n = pred (List.length l1) in
*)
let get_type msg st bo =
try
- let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in
+ let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in
ty
with e -> failwith (msg ^ ": " ^ Printexc.to_string e)
| None -> []
| Some (sty, ety) ->
let e = Cn.hole "" in
- let csty, cety = cic sty, cic ety in
+ let csty, cety = H.cic sty, H.cic ety in
if Ut.alpha_equivalence csty cety then [] else
match name with
| None -> [T.Change (sty, ety, None, e, "")]
[T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")]
let rec proc_lambda st name v t =
- let dno = DTI.does_not_occur 1 (cic t) in
+ let dno = DTI.does_not_occur 1 (H.cic t) in
let dno = dno && match get_inner_types st t with
| None -> true
| Some (it, et) ->
- DTI.does_not_occur 1 (cic it) && DTI.does_not_occur 1 (cic et)
+ DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et)
in
let name = match dno, name with
| true, _ -> C.Anonymous
| false, C.Anonymous -> H.mk_fresh_name st.context used_premise
| false, name -> name
in
- let entry = Some (name, C.Decl (cic v)) in
+ let entry = Some (name, C.Decl (H.cic v)) in
let intro = get_intro name in
proc_proof (add st entry intro) t
let qs = [proc_proof (next st) v; [T.Id ""]] in
st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)]
in
- st, C.Decl (cic ity), rqv
+ st, C.Decl (H.cic ity), rqv
| None ->
- st, C.Def (cic v, None), [T.LetIn (intro, v, dtext)]
+ st, C.Def (H.cic v, None), [T.LetIn (intro, v, dtext)]
in
let entry = Some (name, hyp) in
let qt = proc_proof (next (add st entry intro)) t in
let classes, rc = Cl.classify st.context ty in
let goal_arity = match get_inner_types st what with
| None -> 0
- | Some (ity, _) -> snd (PEH.split_with_whd (st.context, cic ity))
+ | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity))
in
let parsno, argsno = List.length classes, List.length tl in
let decurry = parsno - argsno in
let diff = goal_arity - decurry in
- if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd)));
+ if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd)));
let rec mk_synth a n =
if n < 0 then a else mk_synth (I.S.add n a) (pred n)
in
and proc_proof st t =
let f st =
let xtypes, note = match get_inner_types st t with
- | Some (it, et) -> Some (cic it, cic et),
+ | Some (it, et) -> Some (H.cic it, H.cic et),
(Printf.sprintf "\nInferred: %s\nExpected: %s"
- (Pp.ppterm (cic it)) (Pp.ppterm (cic et)))
+ (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et)))
| None -> None, "\nNo types"
in
- let context, clears = Cn.get_clears st.context (cic t) xtypes in
+ let context, clears = Cn.get_clears st.context (H.cic t) xtypes in
let note = Pp.ppcontext st.context ^ note in
{st with context = context; clears = clears; clears_note = note}
in
let proc_obj st = function
| C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars ->
let ast = proc_proof st v in
- let count = T.count_steps 0 ast in
- let text = Printf.sprintf "tactics: %u" count in
+ let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in
+ let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in
T.Theorem (Some s, t, "") :: ast @ [T.Qed text]
| _ ->
failwith "not a theorem"
* http://cs.unibo.it/helm/.
*)
-module H = HExtlib
-module C = Cic
-module G = GrafiteAst
-module N = CicNotationPt
+module HEL = HExtlib
+module C = Cic
+module I = CicInspect
+module G = GrafiteAst
+module N = CicNotationPt
+
+module H = ProceduralHelpers
(* functions to be moved ****************************************************)
(* grafite ast constructors *************************************************)
-let floc = H.dummy_floc
+let floc = HEL.dummy_floc
let mk_note str = G.Comment (floc, G.Note (floc, str))
| _ -> succ a
and count_steps a = List.fold_left count_step a
+
+let rec count_node a = function
+ | Note _
+ | Theorem _
+ | Qed _
+ | Id _
+ | Intros _
+ | Clear _
+ | ClearBody _ -> a
+ | Cut (_, t, _)
+ | LetIn (_, t, _)
+ | Apply (t, _) -> I.count_nodes a (H.cic t)
+ | Rewrite (_, t, _, p, _)
+ | Elim (t, _, p, _)
+ | Change (t, _, _, p, _) ->
+ let a = I.count_nodes a (H.cic t) in
+ I.count_nodes a (H.cic p)
+ | Branch (ss, _) -> List.fold_left count_nodes a ss
+
+and count_nodes a = List.fold_left count_node a
in
let g a = a in
aux g t S.empty
+
+let rec aux n = function
+ | C.Sort _
+ | C.Implicit _
+ | C.Rel _ -> succ n
+ | C.Appl ts -> List.fold_left aux (succ n) ts
+ | C.Const (_, ss)
+ | C.MutConstruct (_, _, _, ss)
+ | C.MutInd (_, _, ss)
+ | C.Var (_, ss) ->
+ let map n (_, t) = aux n t in
+ List.fold_left map (succ n) ss
+ | C.Meta (_, ss) ->
+ let map n = function
+ | None -> n
+ | Some t -> aux n t
+ in
+ List.fold_left map (succ n) ss
+ | C.Cast (t1, t2)
+ | C.LetIn (_, t1, t2)
+ | C.Lambda (_, t1, t2)
+ | C.Prod (_, t1, t2) -> aux (aux (succ n) t2) t1
+ | C.MutCase (_, _, t1, t2, ss) ->
+ aux (aux (List.fold_left aux (succ n) ss) t2) t1
+ | C.Fix (_, ss) ->
+ let map n (_, _, t1, t2) = aux (aux n t2) t1 in
+ List.fold_left map (succ n) ss
+ | C.CoFix (_, ss) ->
+ let map n (_, t1, t2) = aux (aux n t2) t1 in
+ List.fold_left map (succ n) ss
+
+let count_nodes = aux