meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x;
meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x;
modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y;
- join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y);
- meet_join_le: ∀x,y,z. value (meet x (join y z)) ≤ value (meet x y)
+ join_meet_le: ∀x,y,z. value (join x y) ≤ value (join x (meet y z));
+ meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z))
}.
interpretation "valued lattice meet" 'and a b =
apply (eq_trans ?? (μ (z ∧ x)) ?H1 (zero_neutral ??));
qed.
+lemma modularj: ∀R.∀L:vlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z).
+intros (R L y z);
+lapply (modular_mjp ?? y z) as H1;
+apply (plus_cancr ??? (μ(y ∧ z)));
+apply (eq_trans ?? ? ? H1); clear H1;
+apply (eq_trans ?? ? ?? (plus_assoc ????));
+apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse]
+apply (eq_trans ?? ? ?? (plus_comm ???));
+apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??)));
+apply eq_reflexive.
+qed.
+
+lemma modularm: ∀R.∀L:vlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z).
+intros (R L y z);
+lapply (modular_mjp ?? y z) as H1;
+apply (plus_cancl ??? (μ(y ∨ z)));
+apply (eq_trans ?? ? ? H1); clear H1;
+apply (eq_trans ????? (plus_comm ???));
+apply (eq_trans ?? ? ?? (plus_assoc ????));
+apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse]
+apply (eq_trans ?? ? ?? (plus_comm ???));
+apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??)));
+apply eq_reflexive.
+qed.
+
+lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))).
+intros (R L x y z);
+lapply (modular_mjp ?? x (y ∨ z)) as H1;
+apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? H1); clear H1;
+apply (eq_trans ?? ? ?? (plus_comm ???));
+(* apply (eq_trans ?? (0+μ(x∧(y∧z))) ?? (opp_inverse ??)); ASSERT FALSE *)
+apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z)))); [2: apply eq_sym; apply plus_assoc;]
+apply (eq_trans ?? (0+μ(x∧(y∨z)))); [2: apply feq_plusr; apply eq_sym; apply opp_inverse;]
+(* apply (eq_trans ?? ? ? (eq_refl ??) (zero_neutral ??)); ASSERT FALSE *)
+apply (eq_trans ?? (μ(x∧(y∨z)))); [apply eq_reflexive]
+apply eq_sym; apply zero_neutral.
+qed.
+
lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L.
μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)).
intros (R L x y z);
-cut (μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z)))); [2:
- lapply (modular_mjp ?? x (y ∨ z)) as H1;
- apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? H1); clear H1;
- apply (eq_trans ?? ? ?? (plus_comm ???));
- (* apply (eq_trans ?? (0+μ(x∧(y∧z))) ?? (opp_inverse ??)); ASSERT FALSE *)
- apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z)))); [2: apply eq_sym; apply plus_assoc;]
- apply (eq_trans ?? (0+μ(x∧(y∨z)))); [2: apply feq_plusr; apply eq_sym; apply opp_inverse;]
- (* apply (eq_trans ?? ? ? (eq_refl ??) (zero_neutral ??)); ASSERT FALSE *)
- apply (eq_trans ?? (μ(x∧(y∨z)))); [apply eq_reflexive| apply eq_sym; apply zero_neutral]]
-apply (eq_trans ?? ? ? Hcut); clear Hcut;
-cut ( μ(y∨z) ≈ μy + μz + -μ (y ∧ z)); [2:
- lapply (modular_mjp ?? y z) as H1;
- apply (plus_cancr ??? (μ(y ∧ z)));
- apply (eq_trans ?? ? ? H1); clear H1;
- apply (eq_trans ?? ? ?? (plus_assoc ????));
- apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse]
- apply (eq_trans ?? ? ?? (plus_comm ???));
- apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??)));
- apply eq_reflexive;]
+apply (eq_trans ?? ? ? (modularmj ?? x y z));
apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z))) ?); [
- apply feq_plusr; apply feq_plusl; apply Hcut] clear Hcut;
+ apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);]
apply (eq_trans ?? (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2:
apply feq_plusl; apply feq_opp;
apply (eq_trans ?? ? ? (join_assoc ?????));
lemma meet_join_le1: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)).
intros (R L x y z);
-apply (le_rewr ??? ? (step1_3_57 ?????));
-apply (le_rewr ??? (μ x + μ y + μ z + -μ (y ∧ z) + -μ(z ∨ (x ∨ y))) (foo ?????));
-apply (le_rewr ??? (μ x + μ y + μ z + -μ (y ∧ z) + -μ((z ∨ x) ∨ y)));
- [ apply feq_plusl; apply eq_opp_sym; apply join_assoc;]
-lapply (meet_join_le ?? z x y);
-cut (- μ (z ∨ x ∨ y) ≈ - μ (z ∨ x) - μ y + μ (y ∧ (z ∨ x)));
- [2:
-
-
-lemma join_meet_le1: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z).
-(* hint per duplicati? *)
-intros (R L x y z);
-apply (le_rewr ??? (0 + μ (x ∨ z)) (zero_neutral ??));
-apply (le_rewr ??? (μ (x ∨ z) + 0) (plus_comm ???));
-apply (le_rewr ??? (μ (x ∨ z) + (-μ(y ∨ z) + μ(y ∨ z))) (opp_inverse ? ?));
-
-
-
+apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????)));
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [
+ apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [
+ apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [
+ apply feq_plusl; apply (eq_trans ?? (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [
+ apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;]
+ apply eq_sym; apply eq_opp_plus_plus_opp_opp;]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [
+ repeat apply feq_plusl; apply eq_sym; apply (eq_trans ?? (μ((z∨x)∧y)) ? (eq_opp_opp_x_x ??));
+ apply meet_comm;]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [
+ apply eq_sym; apply plus_assoc;]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;]
+apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply eq_sym; apply plus_assoc;]
+apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????));
+ apply (eq_trans ?? ( μx+ μy+ μz+(- μy+- μ(y∧z))) ? (eq_sym ??? (plus_assoc ????)));
+ apply feq_plusl; apply plus_comm;]
+apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????));
+ apply (eq_trans ?? (μx+ μy+( -μy+ μz)) ? (eq_sym ??? (plus_assoc ????)));
+ apply feq_plusl; apply plus_comm;]
+apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????));
+ apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???));
+ apply opp_inverse; apply eq_reflexive;]
+apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???));
+ apply eq_sym; apply zero_neutral;]
+apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply plus_comm;]
+apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????));
+ apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl;
+ apply plus_comm;]
+apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [
+ repeat apply feq_plusr; apply modularm;]
+apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????));
+apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral]
+apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse]
+apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;]
+repeat apply fle_plusl; apply meet_join_le;
+qed.