(**************************************************************************)
set "baseuri" "cic:/matita/datatypes/constructors/".
+include "logic/equality.ma".
inductive void : Set \def.
inductive Prod (A,B:Set) : Set \def
pair : A \to B \to Prod A B.
+definition fst \def \lambda A,B:Set.\lambda p: Prod A B.
+match p with
+[(pair a b) \Rightarrow a].
+
+definition snd \def \lambda A,B:Set.\lambda p: Prod A B.
+match p with
+[(pair a b) \Rightarrow b].
+
+theorem eq_pair_fst_snd: \forall A,B:Set.\forall p: Prod A B.
+p = pair A B (fst A B p) (snd A B p).
+intros.elim p.simplify.reflexivity.
+qed.
+
inductive Sum (A,B:Set) : Set \def
inl : A \to Sum A B
-| inr : B \to Sum A B.
\ No newline at end of file
+| inr : B \to Sum A B.