include "logic/cprop.ma".
-nrecord qpowerclass (A: setoid) : Type[1] ≝
- { pc:> Ω^A; (* qui pc viene dichiarato con un target preciso...
+nrecord ext_powerclass (A: setoid) : Type[1] ≝
+ { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso...
forse lo si vorrebbe dichiarato con un target più lasco
ma la sintassi :> non lo supporta *)
- mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc)
+ ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr)
}.
notation > "𝛀 ^ term 90 A" non associative with precedence 70
-for @{ 'qpowerclass $A }.
+for @{ 'ext_powerclass $A }.
notation "Ω term 90 A \atop ≈" non associative with precedence 70
-for @{ 'qpowerclass $A }.
+for @{ 'ext_powerclass $A }.
-interpretation "qpowerclass" 'qpowerclass a = (qpowerclass a).
+interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a).
ndefinition Full_set: ∀A. 𝛀^A.
#A; @[ napply A | #x; #x'; #H; napply refl1]
nqed.
-ncoercion Full_set: ∀A. qpowerclass A ≝ Full_set on A: setoid to qpowerclass ?.
+ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?.
-ndefinition qseteq: ∀A. equivalence_relation1 (𝛀^A).
+ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A).
#A; @
[ napply (λS,S'. S = S')
| #S; napply (refl1 ? (seteq A))
| #S; #T; #U; napply (trans1 ? (seteq A))]
nqed.
-ndefinition qpowerclass_setoid: setoid → setoid1.
+ndefinition ext_powerclass_setoid: setoid → setoid1.
#A; @
- [ napply (qpowerclass A)
- | napply (qseteq A) ]
+ [ napply (ext_powerclass A)
+ | napply (ext_seteq A) ]
nqed.
-unification hint 0 ≔ A ⊢
- carr1 (mk_setoid1 (𝛀^A) (eq1 (qpowerclass_setoid A)))
-≡ qpowerclass A.
+unification hint 0 ≔ A;
+ R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A)))
+ (* ----------------------------------------------------- *) ⊢
+ carr1 R ≡ ext_powerclass A.
-ncoercion pc' : ∀A.∀x:qpowerclass_setoid A. Ω^A ≝ pc
-on _x : (carr1 (qpowerclass_setoid ?)) to (Ω^?).
+
+(*
+ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr
+on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?).
+*)
-nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP.
+nlemma mem_ext_powerclass_setoid_is_morph:
+ ∀A. binary_morphism1 (setoid1_of_setoid A) (ext_powerclass_setoid A) CPROP.
#A; @
[ napply (λx,S. x ∈ S)
| #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H;
- ##[ napply Hb1; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha^-1;##]
- ##| napply Hb2; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha;##]
+ ##[ napply Hb1; napply (. (ext_prop … Ha^-1)); nassumption;
+ ##| napply Hb2; napply (. (ext_prop … Ha)); nassumption;
##]
##]
nqed.
unification hint 0 ≔ A:setoid, x, S;
- SS ≟ (pc ? S),
- TT ≟ (mk_binary_morphism1 ???
- (λx:setoid1_of_setoid ?.λS:qpowerclass_setoid ?. x ∈ S)
- (prop21 ??? (mem_ok A)))
-
+ SS ≟ (ext_carr ? S),
+ TT ≟ (mk_binary_morphism1 ???
+ (λx:setoid1_of_setoid ?.λS:ext_powerclass_setoid ?. x ∈ S)
+ (prop21 ??? (mem_ext_powerclass_setoid_is_morph A))),
+ M1 ≟ ?,
+ M2 ≟ ?,
+ M3 ≟ ?
(*-------------------------------------*) ⊢
- fun21 ? ? ? TT x S
- ≡ mem A SS x.
+ fun21 M1 M2 M3 TT x S ≡ mem A SS x.
-nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP.
+nlemma subseteq_is_morph: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) CPROP.
#A; @
[ napply (λS,S'. S ⊆ S')
| #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #H
(*-----------------------------------------------------------------*) ⊢
eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'.
-nlemma intersect_ok: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
+nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
#A; #S; #S'; @ (S ∩ S');
#a; #a'; #Ha; @; *; #H1; #H2; @
[##1,2: napply (. Ha^-1‡#); nassumption;
nqed.
alias symbol "hint_decl" = "hint_decl_Type1".
-unification hint 1 ≔
- A : setoid, B,C : qpowerclass A ⊢
- pc A (mk_qpowerclass ? (B ∩ C) (mem_ok' ? (intersect_ok ? B C)))
- ≡ intersect ? (pc ? B) (pc ? C).
-
-unification hint 1 ≔
- A : setoid, B,C : qpowerclass A;
- DX ≟ (intersect ? (pc ? B) (pc ? C)),
- SX ≟ (mk_qpowerclass ? (B ∩ C) (mem_ok' ? (intersect_ok ? B C)))
- (*-----------------------------------------------------------------*) ⊢
- pc A SX ≡ DX.
-
-nlemma intersect_ok': ∀A. binary_morphism1 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A).
+unification hint 0 ≔
+ A : setoid, B,C : ext_powerclass A;
+ R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C)))
+
+ (* ------------------------------------------*) ⊢
+ ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C).
+
+nlemma intersect_is_morph:
+ ∀A. binary_morphism1 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A).
#A; @ (λS,S'. S ∩ S');
#a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *; #Ka; #Kb; @
[ napply Ha1; nassumption
alias symbol "hint_decl" = "hint_decl_Type1".
unification hint 0 ≔
- A : Type[0], B,C : powerclass A ⊢
- fun21 …
- (mk_binary_morphism1 …
+ A : Type[0], B,C : Ω^A;
+ R ≟ (mk_binary_morphism1 …
(λS,S'.S ∩ S')
- (prop21 … (intersect_ok' A))) B C
- ≡ intersect ? B C.
+ (prop21 … (intersect_is_morph A)))
+ ⊢
+ fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C
+ ≡ intersect ? B C.
ndefinition prop21_mem :
- ∀A,C.∀f:binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) C.
+ ∀A,C.∀f:binary_morphism1 (setoid1_of_setoid A) (ext_powerclass_setoid A) C.
∀a,a':setoid1_of_setoid A.
- ∀b,b':qpowerclass_setoid A.a = a' → b = b' → f a b = f a' b'.
+ ∀b,b':ext_powerclass_setoid A.a = a' → b = b' → f a b = f a' b'.
#A; #C; #f; #a; #a'; #b; #b'; #H1; #H2; napply prop21; nassumption;
nqed.
interpretation "prop21 mem" 'prop2 l r = (prop21_mem ??????? l r).
-nlemma intersect_ok'':
- ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A).
- #A; @ (intersect_ok A); nlapply (prop21 … (intersect_ok' A)); #H;
- #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption;
+nlemma intersect_is_ext_morph:
+ ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A).
+ #A; @ (intersect_is_ext …); nlapply (prop21 … (intersect_is_morph A));
+#H; #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption;
nqed.
unification hint 1 ≔
- A:?, B,C : 𝛀^A ⊢
- fun21 …
- (mk_binary_morphism1 …
- (λS,S':qpowerclass_setoid A.S ∩ S')
- (prop21 … (intersect_ok'' A))) B C
- ≡ intersect ? B C.
-
+ A:setoid, B,C : 𝛀^A;
+ R ≟ (mk_binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A)
+ (λS,S':carr1 (ext_powerclass_setoid A).
+ mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S')))
+ (prop21 … (intersect_is_ext_morph A))) ,
+ BB ≟ (ext_carr ? B),
+ CC ≟ (ext_carr ? C)
+ (* ------------------------------------------------------*) ⊢
+ ext_carr A
+ (fun21
+ (ext_powerclass_setoid A)
+ (ext_powerclass_setoid A)
+ (ext_powerclass_setoid A) R B C) ≡
+ intersect (carr A) BB CC.
+(*
nlemma test: ∀U.∀A,B:qpowerclass U. A ∩ B = A →
;
}.
*)
+*)
\ No newline at end of file