EqualityTactics.rewrite_tac ~term:t
else
EqualityTactics.rewrite_back_tac ~term:t
+ | TacticAst.FwdSimpl (_, name) ->
+ Tactics.fwd_simpl ~hyp:(Cic.Name name) ~dbd:(MatitaDb.instance ())
+ | TacticAst.LApply (_, term, substs) ->
+ let f (name, term) = Cic.Name name, term in
+ Tactics.lapply ~substs:(List.map f substs) term
| _ -> assert false
let eval_tactical status tac =
| TacticAst.Split loc -> status, TacticAst.Split loc
| TacticAst.Symmetry loc -> status, TacticAst.Symmetry loc
| TacticAst.Goal (loc, g) -> status, TacticAst.Goal (loc, g)
+ | TacticAst.FwdSimpl (loc, name) -> status, TacticAst.FwdSimpl (loc, name)
+ | TacticAst.LApply (loc, term, substs) ->
+ let f (status, substs) (name, term) =
+ let status, term = disambiguate_term status term in
+ status, (name, term) :: substs
+ in
+ let status, term = disambiguate_term status term in
+ let status, substs = List.fold_left f (status, []) substs in
+ status, TacticAst.LApply (loc, term, substs)
+
| x ->
print_endline ("Not yet implemented:" ^ TacticAstPp.pp_tactic x);
assert false
--- /dev/null
+alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
+alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
+alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
+alias id "le" = "cic:/matita/fguidi/le.ind#xpointer(1/1)".
+alias id "False_ind" = "cic:/Coq/Init/Logic/False_ind.con".
+alias id "I" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1/1)".
+alias id "ex_intro" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1/1)".
+
+alias symbol "and" (instance 0) = "logical and".
+alias symbol "eq" (instance 0) = "leibnitz's equality".
+alias symbol "exists" (instance 0) = "exists".
+alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)".
+alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)".
+
+definition is_S: nat \to Prop \def
+ \lambda n. match n with
+ [ O \Rightarrow False
+ | (S n) \Rightarrow True
+ ].
+
+definition pred: nat \to nat \def
+ \lambda n. match n with
+ [ O \Rightarrow O
+ | (S n) \Rightarrow n
+ ].
+
+theorem eq_gen_S_O: \forall x. (S x = O) \to \forall P:Prop. P.
+intros. apply False_ind. cut (is_S O). auto. elim H. exact I.
+qed.
+
+theorem eq_gen_S_O_cc: (\forall P:Prop. P) \to \forall x. (S x = O).
+intros. auto.
+qed.
+
+theorem eq_gen_S_S: \forall m,n. (S m) = (S n) \to m = n.
+intros. cut (pred (S m)) = (pred (S n)).
+assumption. elim H. auto.
+qed.
+
+theorem eq_gen_S_S_cc: \forall m,n. m = n \to (S m) = (S n).
+intros. elim H. auto.
+qed.
+
+inductive le: nat \to nat \to Prop \def
+ le_zero: \forall n. (le O n)
+ | le_succ: \forall m, n. (le m n) \to (le (S m) (S n)).
+
+theorem le_refl: \forall x. (le x x).
+intros. elim x. auto. auto.
+qed.
+
+theorem le_gen_x_O_aux: \forall x, y. (le x y) \to (y =O) \to
+ (x = O).
+intros 3. elim H. auto. apply eq_gen_S_O. exact x2. auto.
+qed.
+
+theorem le_gen_x_O: \forall x. (le x O) \to (x = O).
+intros. apply le_gen_x_O_aux. exact O. auto. auto.
+qed.
+
+theorem le_gen_x_O_cc: \forall x. (x = O) \to (le x O).
+intros. elim H. auto.
+qed.
+
+theorem le_gen_S_x_aux: \forall m,x,y. (le y x) \to (y = S m) \to
+ (\exists n. x = (S n) \land (le m n)).
+intros 4. elim H.
+apply eq_gen_S_O. exact m. elim H1. auto.
+cut x1 = m. elim Hcut. apply ex_intro. exact x2. auto. auto.
+qed.
+
+theorem le_gen_S_x: \forall m,x. (le (S m) x) \to
+ (\exists n. x = (S n) \land (le m n)).
+intros. apply le_gen_S_x_aux. exact (S m). auto. auto.
+qed.
+
+theorem le_gen_S_x_cc: \forall m,x. (\exists n. x = (S n) \land (le m n)) \to
+ (le (S m) x).
+intros. elim H. elim H1. cut (S x1) = x. elim Hcut. auto. elim H2. auto.
+qed.
+
+theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n).
+intros. cut (\exists p. (S n) = (S p) \land (le m p)).
+elim Hcut. elim H1. cut x = n.
+elim Hcut1. auto. symmetry. auto. auto.
+qed.
+
+theorem le_gen_S_S_cc: \forall m,n. (le m n) \to (le (S m) (S n)).
+intros. auto.
+qed.
+
+theorem pippo: \forall m,n. (le (S m) (S n)) \to (le m n).
+intros.
+lapply le_gen_S_x.
\ No newline at end of file