--- /dev/null
+
+include "sets/sets.ma".
+
+ndefinition binary_morph_setoid : setoid → setoid → setoid → setoid.
+#S1; #S2; #T; @ (binary_morphism S1 S2 T); @;
+##[ #f; #g; napply (∀x,y. f x y = g x y);
+##| #f; #x; #y; napply #;
+##| #f; #g; #H; #x; #y; napply ((H x y)^-1);
+##| #f; #g; #h; #H1; #H2; #x; #y; napply (trans … (H1 …) (H2 …)); ##]
+nqed.
+
+ndefinition unary_morph_setoid : setoid → setoid → setoid.
+#S1; #S2; @ (unary_morphism S1 S2); @;
+##[ #f; #g; napply (∀x. f x = g x);
+##| #f; #x; napply #;
+##| #f; #g; #H; #x; napply ((H x)^-1);
+##| #f; #g; #h; #H1; #H2; #x; napply (trans … (H1 …) (H2 …)); ##]
+nqed.
+
+nrecord category : Type[2] ≝
+ { objs:> Type[1];
+ arrows: objs → objs → setoid;
+ id: ∀o:objs. arrows o o;
+ comp: ∀o1,o2,o3. binary_morphism (arrows o1 o2) (arrows o2 o3) (arrows o1 o3);
+ comp_assoc: ∀o1,o2,o3,o4. ∀a12,a23,a34.
+ comp o1 o3 o4 (comp o1 o2 o3 a12 a23) a34 = comp o1 o2 o4 a12 (comp o2 o3 o4 a23 a34);
+ id_neutral_left: ∀o1,o2. ∀a: arrows o1 o2. comp ??? (id o1) a = a;
+ id_neutral_right: ∀o1,o2. ∀a: arrows o1 o2. comp ??? a (id o2) = a
+ }.
+
+notation "hvbox(A break ⇒ B)" right associative with precedence 50 for @{ 'arrows $A $B }.
+interpretation "arrows" 'arrows A B = (unary_morphism A B).
+
+notation > "𝐈𝐝 term 90 A" non associative with precedence 90 for @{ 'id $A }.
+notation < "mpadded width -90% (𝐈) 𝐝 \sub term 90 A" non associative with precedence 90 for @{ 'id $A }.
+
+interpretation "id" 'id A = (id ? A).
+
+ndefinition SETOID : category.
+@;
+##[ napply setoid;
+##| napply unary_morph_setoid;
+##| #o; @ (λx.x); #a; #b; #H; napply H;
+##| #o1; #o2; #o3; @;
+ ##[ #f; #g; @(λx.g (f x)); #a; #b; #H; napply (.= (††H)); napply #;
+ ##| #f; #g; #f'; #g'; #H1; #H2; nwhd; #x; napply (.= (H2 (f x)));
+ napply (.= (†(H1 x))); napply #; ##]
+##| #o1; #o2; #o3; #o4; #f; #g; #h; nwhd; #x; napply #;
+##|##6,7: #o1; #o2; #f; nwhd; #x; napply #; ##]
+nqed.
+
+unification hint 0 ≔ ;
+ R ≟ (mk_category setoid unary_morph_setoid (id SETOID) (comp SETOID)
+ (comp_assoc SETOID) (id_neutral_left SETOID)
+ (id_neutral_right SETOID))
+ (* -------------------------------------------------------------------- *) ⊢
+ objs R ≡ setoid.
+
+ unification hint 0 ≔ x,y ;
+ R ≟ (mk_category setoid unary_morph_setoid (id SETOID) (comp SETOID)
+ (comp_assoc SETOID) (id_neutral_left SETOID)
+ (id_neutral_right SETOID))
+ (* -------------------------------------------------------------------- *) ⊢
+ arrows R x y ≡ unary_morph_setoid x y.
+
+unification hint 0 ≔ A,B ;
+ T ≟ (unary_morph_setoid A B)
+ (* ----------------------------------- *) ⊢
+ unary_morphism A B ≡ carr T.
+
+
+ndefinition TYPE : setoid1.
+@ setoid; @;
+##[ #T1; #T2;
+ alias symbol "eq" = "setoid eq".
+ napply (∃f:T1 ⇒ T2.∃g:T2 ⇒ T1. (∀x.f (g x) = x) ∧ (∀y.g (f y) = y));
+##| #A; @ (𝐈𝐝 A); @ (𝐈𝐝 A); @; #x; napply #;
+##| #A; #B; *; #f; *; #g; *; #Hfg; #Hgf; @g; @f; @; nassumption;
+##| #A; #B; #C; *; #f; *; #f'; *; #Hf; #Hf'; *; #g; *; #g'; *; #Hg; #Hg';
+ @; ##[ @(λx.g (f x)); #a; #b; #H; napply (.= (††H)); napply #;
+ ##| @; ##[ @(λx.f'(g' x)); #a; #b; #H; napply (.= (††H)); napply #; ##]
+ @; #x;
+ ##[ napply (.= (†(Hf …))); napply Hg;
+ ##| napply (.= (†(Hg' …))); napply Hf'; ##] ##]
+nqed.
+
+unification hint 0 ≔ ;
+ R ≟ (mk_setoid1 setoid (eq1 TYPE))
+ (* -------------------------------------------- *) ⊢
+ carr1 R ≡ setoid.
+
+nrecord unary_morphism01 (A : setoid) (B: setoid1) : Type[1] ≝
+ { fun01:1> A → B;
+ prop01: ∀a,a'. eq ? a a' → eq1 ? (fun01 a) (fun01 a')
+ }.
+
+interpretation "prop01" 'prop1 c = (prop01 ????? c).
+
+nrecord nAx : Type[1] ≝ {
+ nS:> setoid;
+ nI: unary_morphism01 nS TYPE;
+ nD: ∀a:nS. unary_morphism01 (nI a) TYPE;
+ nd: ∀a:nS. ∀i:nI a. unary_morphism (nD a i) nS
+}.
+
+notation "𝐃 \sub ( ❨a,\emsp i❩ )" non associative with precedence 70 for @{ 'D $a $i }.
+notation "𝐝 \sub ( ❨a,\emsp i,\emsp j❩ )" non associative with precedence 70 for @{ 'd $a $i $j}.
+notation "𝐈 \sub( ❨a❩ )" non associative with precedence 70 for @{ 'I $a }.
+
+notation > "𝐈 term 90 a" non associative with precedence 70 for @{ 'I $a }.
+notation > "𝐃 term 90 a term 90 i" non associative with precedence 70 for @{ 'D $a $i }.
+notation > "𝐝 term 90 a term 90 i term 90 j" non associative with precedence 70 for @{ 'd $a $i $j}.
+
+interpretation "D" 'D a i = (nD ? a i).
+interpretation "d" 'd a i j = (nd ? a i j).
+interpretation "new I" 'I a = (nI ? a).
+
+ndefinition image ≝ λA:nAx.λa:A.λi. { x | ∃j:𝐃 a i. x = 𝐝 a i j }.
+(*
+nlemma elim_eq_TYPE : ∀A,B:setoid.∀P:CProp[1]. A=B → ((B ⇒ A) → P) → P.
+#A; #B; #P; *; #f; *; #g; #_; #IH; napply IH; napply g;
+nqed.
+
+ninductive squash (A : Type[1]) : CProp[1] ≝
+ | hide : A → squash A.
+
+nrecord unary_morphism_dep (A : setoid) (T:unary_morphism01 A TYPE) : Type[1] ≝ {
+ fun_dep : ∀a:A.(T a);
+ prop_dep : ∀a,b:A. ∀H:a = b.
+ ? (prop01 … T … H) }.
+##[##3: *;
+
+ (λf.hide ? (eq_rel ? (eq (T a)) (fun_dep a) (f (fun_dep b))))
+}.
+##[##2: nletin lhs ≝ (fun_dep a:?); nletin rhs ≝ (fun_dep b:?);
+ nletin patched_rhs ≝ (f rhs : ?);
+ nlapply (lhs = patched_rhs);
+ *)
+
+(*
+nlemma foo: ∀A:setoid.∀T:unary_morphism01 A TYPE.∀P:∀x:A.∀a:T x.CProp[0].
+ ∀x,y:A.x=y → (∃a:T x.P ? a) = (∃a:T y.P ? a).
+#A; #T; #P; #x; #y; #H; ncases (prop01 … T … H); #f; *; #g; *; #Hf; #Hg;
+@; *; #e; #He;
+##[ @(f e);
+*)
+
+ndefinition image_is_ext : ∀A:nAx.∀a:A.∀i:𝐈 a.𝛀^A.
+#A; #a; #i; @ (image … i); #x; #y; #H; @;
+##[ *; #d; #Ex; @ d; napply (.= H^-1); nassumption;
+##| *; #d; #Ex; @ d; napply (.= H); nassumption; ##]
+nqed.
+
+unification hint 0 ≔ A,a,i ;
+ R ≟ (mk_ext_powerclass ? (image A a i) (ext_prop ? (image_is_ext A a i)))
+ (* --------------------------------------------------------------- *) ⊢
+ ext_carr A R ≡ (image A a i).
+
+notation > "𝐈𝐦 [𝐝 term 90 a term 90 i]" non associative with precedence 70 for @{ 'Im $a $i }.
+notation < "mpadded width -90% (𝐈) 𝐦 [𝐝 \sub ( ❨a,\emsp i❩ )]" non associative with precedence 70 for @{ 'Im $a $i }.
+
+interpretation "image" 'Im a i = (image ? a i).
+
+ninductive Ord (A : nAx) : Type[0] ≝
+ | oO : Ord A
+ | oS : Ord A → Ord A
+ | oL : ∀a:A.∀i.∀f:𝐃 a i → Ord A. Ord A.
+
+notation "0" non associative with precedence 90 for @{ 'oO }.
+notation "Λ term 90 f" non associative with precedence 50 for @{ 'oL $f }.
+notation "x+1" non associative with precedence 50 for @{'oS $x }.
+
+interpretation "ordinals Zero" 'oO = (oO ?).
+interpretation "ordinals Lambda" 'oL f = (oL ? ? ? f).
+interpretation "ordinals Succ" 'oS x = (oS ? x).
+
+(* manca russell *)
+nlet rec famU (A : nAx) (U : 𝛀^A) (x : Ord A) on x : 𝛀^A ≝
+ match x with
+ [ oO ⇒ mk_ext_powerclass A U ?
+ | oS y ⇒ let Un ≝ famU A U y in mk_ext_powerclass A (Un ∪ { x | ∃i.𝐈𝐦[𝐝 x i] ⊆ Un}) ?
+ | oL a i f ⇒ mk_ext_powerclass A { x | ∃j.x ∈ famU A U (f j) } ? ].
+##[ #x; #y; #H; alias symbol "trans" = "trans1".
+ alias symbol "prop2" = "prop21".
+ napply (.= (H‡#)); napply #;
+##| #x; #y; #H; @; *;
+ ##[##1,3: #E; @1; ##[ napply (. (ext_prop A Un … H^-1)); ##| napply (. (ext_prop A Un … H)); ##]
+ nassumption;
+ ##|##*: *; #i; #H1; @2;
+ ##[ nlapply (†H); ##[ napply (nI A); ##| ##skip ##]
+ #W; ncases W; #f; *; #g; *; #Hf; #Hg;
+ @ (f i); #a; #Ha; napply H1;
+ ncut (𝐈𝐦[𝐝 y (f i)] = 𝐈𝐦[𝐝 x i]);
+
+ ##[##2: #E; alias symbol "refl" = "refl".
+ alias symbol "prop2" = "prop21 mem".
+ alias symbol "invert" = "setoid1 symmetry".
+ napply (. (#‡E^-1)); napply Ha; ##]
+
+ @; #w; #Hw; nwhd;
+ ncut (𝐈𝐦[𝐝 y (f i)] = 𝐈𝐦[𝐝 x i]);
+
+
+
+notation < "term 90 U \sub (term 90 x)" non associative with precedence 50 for @{ 'famU $U $x }.
+notation > "U ⎽ term 90 x" non associative with precedence 50 for @{ 'famU $U $x }.
+
+interpretation "famU" 'famU U x = (famU ? U x).
+
+(*D
+
+We attach as the input notation for U_x the similar `U⎽x` where underscore,
+that is a character valid for identifier names, has been replaced by `⎽` that is
+not. The symbol `⎽` can act as a separator, and can be typed as an alternative
+for `_` (i.e. pressing ALT-L after `_`).
+
+The notion ◃(U) has to be defined as the subset of of y
+belonging to U_x for some x. Moreover, we have to define the notion
+of cover between sets again, since the one defined at the beginning
+of the tutorial works only for the old axiom set definition.
+
+D*)
+
+ndefinition ord_coverage : ∀A:nAx.∀U:Ω^A.Ω^A ≝ λA,U.{ y | ∃x:Ord A. y ∈ famU ? U x }.
+
+ndefinition ord_cover_set ≝ λc:∀A:nAx.Ω^A → Ω^A.λA,C,U.
+ ∀y.y ∈ C → y ∈ c A U.
+
+interpretation "coverage new cover" 'coverage U = (ord_coverage ? U).
+interpretation "new covers set" 'covers a U = (ord_cover_set ord_coverage ? a U).
+interpretation "new covers" 'covers a U = (mem ? (ord_coverage ? U) a).
+
+(*D
+
+Before proving that this cover relation validates the reflexivity and infinity
+rules, we prove this little technical lemma that is used in the proof for the
+infinity rule.
+
+D*)
+
+nlemma ord_subset:
+ ∀A:nAx.∀a:A.∀i,f,U.∀j:𝐃 a i.U⎽(f j) ⊆ U⎽(Λ f).
+#A; #a; #i; #f; #U; #j; #b; #bUf; @ j; nassumption;
+nqed.
+
+(*D
+
+The proof of infinity uses the following form of the Axiom of choice,
+that cannot be prove inside Matita, since the existential quantifier
+lives in the sort of predicative propositions while the sigma in the conclusion
+lives in the sort of data types, and thus the former cannot be eliminated
+to provide the second.
+
+D*)
+
+naxiom AC : ∀A,a,i,U.
+ (∀j:𝐃 a i.∃x:Ord A.𝐝 a i j ∈ U⎽x) → (Σf.∀j:𝐃 a i.𝐝 a i j ∈ U⎽(f j)).
+
+(*D
+
+In the proof of infinity, we have to rewrite under the ∈ predicate.
+It is clearly possible to show that U_x is an extensional set:
+
+> a=b → a ∈ U_x → b ∈ U_x
+
+Anyway this proof in non trivial induction over x, that requires 𝐈 and 𝐃 to be
+declared as morphisms. This poses to problem, but goes out of the scope of the
+tutorial and we thus assume it.
+
+D*)
+
+naxiom setoidification :
+ ∀A:nAx.∀a,b:A.∀x.∀U.a=b → b ∈ U⎽x → a ∈ U⎽x.
+
+(*D
+
+The reflexivity proof is trivial, it is enough to provide the ordinal 0
+as a witness, then ◃(U) reduces to U by definition, hence the conclusion.
+
+D*)
+ntheorem new_coverage_reflexive:
+ ∀A:nAx.∀U:Ω^A.∀a. a ∈ U → a ◃ U.
+#A; #U; #a; #H; @ (0); napply H;
+nqed.
+
+(*D
+
+We now proceed with the proof of the infinity rule.
+
+D*)
+
+alias symbol "covers" = "new covers set".
+alias symbol "covers" = "new covers".
+alias symbol "covers" = "new covers set".
+alias symbol "covers" = "new covers".
+alias symbol "covers" = "new covers set".
+alias symbol "covers" = "new covers".
+ntheorem new_coverage_infinity:
+ ∀A:nAx.∀U:Ω^A.∀a:A. (∃i:𝐈 a. 𝐈𝐦[𝐝 a i] ◃ U) → a ◃ U.
+#A; #U; #a; (** screenshot "n-cov-inf-1". *)
+*; #i; #H; nnormalize in H; (** screenshot "n-cov-inf-2". *)
+ncut (∀y:𝐃 a i.∃x:Ord A.𝐝 a i y ∈ U⎽x); ##[ (** screenshot "n-cov-inf-3". *)
+ #z; napply H; @ z; napply #; ##] #H'; (** screenshot "n-cov-inf-4". *)
+ncases (AC … H'); #f; #Hf; (** screenshot "n-cov-inf-5". *)
+ncut (∀j.𝐝 a i j ∈ U⎽(Λ f));
+ ##[ #j; napply (ord_subset … f … (Hf j));##] #Hf';(** screenshot "n-cov-inf-6". *)
+@ (Λ f+1); (** screenshot "n-cov-inf-7". *)
+@2; (** screenshot "n-cov-inf-8". *)
+@i; #x; *; #d; #Hd; (** screenshot "n-cov-inf-9". *)
+napply (setoidification … Hd); napply Hf';
+nqed.
+
+(*D
+D[n-cov-inf-1]
+We eliminate the existential, obtaining an `i` and a proof that the
+image of d(a,i) is covered by U. The `nnormalize` tactic computes the normal
+form of `H`, thus expands the definition of cover between sets.
+
+D[n-cov-inf-2]
+The paper proof considers `H` implicitly substitutes the equation assumed
+by `H` in its conclusion. In Matita this step is not completely trivia.
+We thus assert (`ncut`) the nicer form of `H`.
+
+D[n-cov-inf-3]
+After introducing `z`, `H` can be applied (choosing `𝐝 a i z` as `y`).
+What is the left to prove is that `∃j: 𝐃 a j. 𝐝 a i z = 𝐝 a i j`, that
+becomes trivial is `j` is chosen to be `z`. In the command `napply #`,
+the `#` is a standard notation for the reflexivity property of the equality.
+
+D[n-cov-inf-4]
+Under `H'` the axiom of choice `AC` can be eliminated, obtaining the `f` and
+its property.
+
+D[n-cov-inf-5]
+The paper proof does now a forward reasoning step, deriving (by the ord_subset
+lemma we proved above) `Hf'` i.e. 𝐝 a i j ∈ U⎽(Λf).
+
+D[n-cov-inf-6]
+To prove that `a◃U` we have to exhibit the ordinal x such that `a ∈ U⎽x`.
+
+D[n-cov-inf-7]
+The definition of `U⎽(…+1)` expands to the union of two sets, and proving
+that `a ∈ X ∪ Y` is defined as proving that `a` is in `X` or `Y`. Applying
+the second constructor `@2;` of the disjunction, we are left to prove that `a`
+belongs to the right hand side.
+
+D[n-cov-inf-8]
+We thus provide `i`, introduce the element being in the image and we are
+left to prove that it belongs to `U_(Λf)`. In the meanwhile, since belonging
+to the image means that there exists an object in the domain… we eliminate the
+existential, obtaining `d` (of type `𝐃 a i`) and the equation defining `x`.
+
+D[n-cov-inf-9]
+We just need to use the equational definition of `x` to obtain a conclusion
+that can be proved with `Hf'`. We assumed that `U_x` is extensional for
+every `x`, thus we are allowed to use `Hd` and close the proof.
+
+D*)
+
+(*D
+
+The next proof is that ◃(U) is mininal. The hardest part of the proof
+it to prepare the goal for the induction. The desiderata is to prove
+`U⎽o ⊆ V` by induction on `o`, but the conclusion of the lemma is,
+unfolding all definitions:
+
+> ∀x. x ∈ { y | ∃o:Ord A.y ∈ U⎽o } → x ∈ V
+
+D*)
+
+nlemma new_coverage_min :
+ ∀A:nAx.∀U:Ω^A.∀V.U ⊆ V → (∀a:A.∀i.𝐈𝐦[𝐝 a i] ⊆ V → a ∈ V) → ◃U ⊆ V.
+#A; #U; #V; #HUV; #Im;#b; (** screenshot "n-cov-min-2". *)
+*; #o; (** screenshot "n-cov-min-3". *)
+ngeneralize in match b; nchange with (U⎽o ⊆ V); (** screenshot "n-cov-min-4". *)
+nelim o; (** screenshot "n-cov-min-5". *)
+##[ #b; #bU0; napply HUV; napply bU0;
+##| #p; #IH; napply subseteq_union_l; ##[ nassumption; ##]
+ #x; *; #i; #H; napply (Im ? i); napply (subseteq_trans … IH); napply H;
+##| #a; #i; #f; #IH; #x; *; #d; napply IH; ##]
+nqed.
+
+(*D
+D[n-cov-min-2]
+After all the introductions, event the element hidden in the ⊆ definition,
+we have to eliminate the existential quantifier, obtaining the ordinal `o`
+
+D[n-cov-min-3]
+What is left is almost right, but the element `b` is already in the
+context. We thus generalize every occurrence of `b` in
+the current goal, obtaining `∀c.c ∈ U⎽o → c ∈ V` that is `U⎽o ⊆ V`.
+
+D[n-cov-min-4]
+We then proceed by induction on `o` obtaining the following goals
+
+D[n-cov-min-5]
+All of them can be proved using simple set theoretic arguments,
+the induction hypothesis and the assumption `Im`.
+
+D*)
+
+
+(*D
+
+bla bla
+
+D*)
+
+nlet rec famF (A: nAx) (F : Ω^A) (x : Ord A) on x : Ω^A ≝
+ match x with
+ [ oO ⇒ F
+ | oS o ⇒ let Fo ≝ famF A F o in Fo ∩ { x | ∀i:𝐈 x.∃j:𝐃 x i.𝐝 x i j ∈ Fo }
+ | oL a i f ⇒ { x | ∀j:𝐃 a i.x ∈ famF A F (f j) }
+ ].
+
+interpretation "famF" 'famU U x = (famF ? U x).
+
+ndefinition ord_fished : ∀A:nAx.∀F:Ω^A.Ω^A ≝ λA,F.{ y | ∀x:Ord A. y ∈ F⎽x }.
+
+interpretation "fished new fish" 'fished U = (ord_fished ? U).
+interpretation "new fish" 'fish a U = (mem ? (ord_fished ? U) a).
+
+(*D
+
+The proof of compatibility uses this little result, that we
+factored out.
+
+D*)
+nlemma co_ord_subset:
+ ∀A:nAx.∀F:Ω^A.∀a,i.∀f:𝐃 a i → Ord A.∀j. F⎽(Λ f) ⊆ F⎽(f j).
+#A; #F; #a; #i; #f; #j; #x; #H; napply H;
+nqed.
+
+(*D
+
+We assume the dual of the axiom of choice, as in the paper proof.
+
+D*)
+naxiom AC_dual :
+ ∀A:nAx.∀a:A.∀i,F. (∀f:𝐃 a i → Ord A.∃x:𝐃 a i.𝐝 a i x ∈ F⎽(f x)) → ∃j:𝐃 a i.∀x:Ord A.𝐝 a i j ∈ F⎽x.
+
+(*D
+
+Proving the anti-reflexivity property is simce, since the
+assumption `a ⋉ F` states that for every ordinal `x` (and thus also 0)
+`a ∈ F⎽x`. If `x` is choosen to be `0`, we obtain the thesis.
+
+D*)
+ntheorem new_fish_antirefl:
+ ∀A:nAx.∀F:Ω^A.∀a. a ⋉ F → a ∈ F.
+#A; #F; #a; #H; nlapply (H 0); #aFo; napply aFo;
+nqed.
+
+(*D
+
+bar
+
+D*)
+ntheorem new_fish_compatible:
+ ∀A:nAx.∀F:Ω^A.∀a. a ⋉ F → ∀i:𝐈 a.∃j:𝐃 a i.𝐝 a i j ⋉ F.
+#A; #F; #a; #aF; #i; nnormalize; (** screenshot "n-f-compat-1". *)
+napply AC_dual; #f; (** screenshot "n-f-compat-2". *)
+nlapply (aF (Λf+1)); #aLf; (** screenshot "n-f-compat-3". *)
+nchange in aLf with
+ (a ∈ F⎽(Λ f) ∧ ∀i:𝐈 a.∃j:𝐃 a i.𝐝 a i j ∈ F⎽(Λ f)); (** screenshot "n-f-compat-4". *)
+ncut (∃j:𝐃 a i.𝐝 a i j ∈ F⎽(f j));##[
+ ncases aLf; #_; #H; nlapply (H i); (** screenshot "n-f-compat-5". *)
+ *; #j; #Hj; @j; napply Hj;##] #aLf'; (** screenshot "n-f-compat-6". *)
+napply aLf';
+nqed.
+
+(*D
+D[n-f-compat-1]
+D[n-f-compat-2]
+D[n-f-compat-3]
+D[n-f-compat-4]
+D[n-f-compat-5]
+D[n-f-compat-6]
+
+D*)
+
+(*D
+
+The proof that `⋉(F)` is maximal is exactly the dual one of the
+minimality of `◃(U)`. Thus the main problem is to obtain `G ⊆ F⎽o`
+before doing the induction over `o`.
+
+D*)
+ntheorem max_new_fished:
+ ∀A:nAx.∀G:ext_powerclass_setoid A.∀F:Ω^A.G ⊆ F → (∀a.a ∈ G → ∀i.𝐈𝐦[𝐝 a i] ≬ G) → G ⊆ ⋉F.
+#A; #G; #F; #GF; #H; #b; #HbG; #o;
+ngeneralize in match HbG; ngeneralize in match b;
+nchange with (G ⊆ F⎽o);
+nelim o;
+##[ napply GF;
+##| #p; #IH; napply (subseteq_intersection_r … IH);
+ #x; #Hx; #i; ncases (H … Hx i); #c; *; *; #d; #Ed; #cG;
+ @d; napply IH;
+ alias symbol "prop2" = "prop21".
+napply (. Ed^-1‡#); napply cG;
+##| #a; #i; #f; #Hf; nchange with (G ⊆ { y | ∀x. y ∈ F⎽(f x) });
+ #b; #Hb; #d; napply (Hf d); napply Hb;
+##]
+nqed.
+
+
+(*D
+<div id="appendix" class="anchor"></div>
+Appendix: tactics explanation
+-----------------------------
+
+In this appendix we try to give a description of tactics
+in terms of sequent calculus rules annotated with proofs.
+The `:` separator has to be read as _is a proof of_, in the spirit
+of the Curry-Howard isomorphism.
+
+ Γ ⊢ f : A1 → … → An → B Γ ⊢ ?1 : A1 … ?n : An
+ napply f; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ (f ?1 … ?n ) : B
+
+ Γ ⊢ ? : F → B Γ ⊢ f : F
+ nlapply f; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ (? f) : B
+
+
+ Γ; x : T ⊢ ? : P(x)
+ #x; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ λx:T.? : ∀x:T.P(x)
+
+
+ Γ ⊢ ?_i : args_i → P(k_i args_i)
+ ncases x; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ match x with [ k1 args1 ⇒ ?_1 | … | kn argsn ⇒ ?_n ] : P(x)
+
+
+ Γ ⊢ ?i : ∀t. P(t) → P(k_i … t …)
+ nelim x; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ (T_rect_CProp0 ?_1 … ?_n) : P(x)
+
+Where `T_rect_CProp0` is the induction principle for the
+inductive type `T`.
+
+ Γ ⊢ ? : Q Q ≡ P
+ nchange with Q; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ ? : P
+
+Where the equivalence relation between types `≡` keeps into account
+β-reduction, δ-reduction (definition unfolding), ζ-reduction (local
+definition unfolding), ι-reduction (pattern matching simplification),
+μ-reduction (recursive function computation) and ν-reduction (co-fixpoint
+computation).
+
+
+ Γ; H : Q; Δ ⊢ ? : G Q ≡ P
+ nchange in H with Q; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ; H : P; Δ ⊢ ? : G
+
+
+
+ Γ ⊢ ?_2 : T → G Γ ⊢ ?_1 : T
+ ncut T; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ (?_2 ?_1) : G
+
+
+ Γ ⊢ ? : ∀x.P(x)
+ ngeneralize in match t; ⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
+ Γ ⊢ (? t) : P(t)
+
+D*)
+
+
+(*D
+
+[1]: http://upsilon.cc/~zack/research/publications/notation.pdf
+
+D*)