]> matita.cs.unibo.it Git - helm.git/commitdiff
- the theory of delifting substitution is done
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Tue, 27 Nov 2012 21:09:22 +0000 (21:09 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Tue, 27 Nov 2012 21:09:22 +0000 (21:09 +0000)
- the theory of multiplicity is done

matita/matita/contribs/lambda/delifting_substitution.ma [new file with mode: 0644]
matita/matita/contribs/lambda/dsubst.ma [deleted file]
matita/matita/contribs/lambda/multiplicity.ma [new file with mode: 0644]

diff --git a/matita/matita/contribs/lambda/delifting_substitution.ma b/matita/matita/contribs/lambda/delifting_substitution.ma
new file mode 100644 (file)
index 0000000..6e648c9
--- /dev/null
@@ -0,0 +1,142 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "lift.ma".
+
+(* DELIFTING SUBSTITUTION ***************************************************)
+
+(* Policy: depth (level) metavariables: d, e (as for lift) *)
+let rec dsubst C d M on M ≝ match M with
+[ VRef i   ⇒ tri … i d (#i) (↑[i] C) (#(i-1))
+| Abst A   ⇒ 𝛌. (dsubst C (d+1) A)
+| Appl B A ⇒ @ (dsubst C d B). (dsubst C d A)
+].
+
+interpretation "delifting substitution"
+   'DSubst C d M = (dsubst C d M).
+
+(* Note: the notation with "/" does not work *)
+notation "hvbox( [ d ⬐ break C ] break term 55 M )"
+   non associative with precedence 55
+   for @{ 'DSubst $C $d $M }.
+
+notation > "hvbox( [ ⬐ C ] break term 55 M )"
+   non associative with precedence 55
+   for @{ 'DSubst $C 0 $M }.
+
+lemma dsubst_vref_lt: ∀i,d,C. i < d → [d ⬐ C] #i = #i.
+normalize /2 width=1/
+qed.
+
+lemma dsubst_vref_eq: ∀d,C. [d ⬐ C] #d = ↑[d]C.
+normalize //
+qed.
+
+lemma dsubst_vref_gt: ∀i,d,C. d < i → [d ⬐ C] #i = #(i-1).
+normalize /2 width=1/
+qed.
+
+theorem dsubst_lift_le: ∀h,C,M,d1,d2. d2 ≤ d1 →
+                        [d2 ⬐ ↑[d1 - d2, h] C] ↑[d1 + 1, h] M = ↑[d1, h] [d2 ⬐ C] M.
+#h #C #M elim M -M
+[ #i #d1 #d2 #Hd21 elim (lt_or_eq_or_gt i d2) #Hid2
+  [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 #Hid1
+    >(dsubst_vref_lt … Hid2) >(lift_vref_lt … Hid1) >lift_vref_lt /2 width=1/
+  | destruct >dsubst_vref_eq >lift_vref_lt /2 width=1/
+  | >(dsubst_vref_gt … Hid2) -Hd21 elim (lt_or_ge (i-1) d1) #Hi1d1
+    [ >(lift_vref_lt … Hi1d1) >lift_vref_lt /2 width=1/
+    | lapply (ltn_to_ltO … Hid2) #Hi
+      >(lift_vref_ge … Hi1d1) >lift_vref_ge /2 width=1/ -Hi1d1 >plus_minus // /3 width=1/
+    ]
+  ]
+| normalize #A #IHA #d1 #d2 #Hd21
+  lapply (IHA (d1+1) (d2+1) ?) -IHA /2 width=1/
+| normalize #B #A #IHB #IHA #d1 #d2 #Hd21
+  >IHB -IHB // >IHA -IHA //
+]
+qed.
+
+theorem dsubst_lift_be: ∀h,C,M,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h →
+                        [d2 ⬐ C] ↑[d1, h + 1] M = ↑[d1, h] M.
+#h #C #M elim M -M
+[ #i #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
+  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
+    >(lift_vref_lt … Hid1) >(lift_vref_lt … Hid1) /2 width=1/
+  | lapply (transitive_le … (i+h) Hd21 ?) -Hd12 -Hd21 /2 width=1/ #Hd2
+    >(lift_vref_ge … Hid1) >(lift_vref_ge … Hid1) -Hid1
+    >dsubst_vref_gt // /2 width=1/
+  ]
+| normalize #A #IHA #d1 #d2 #Hd12 #Hd21
+  >IHA -IHA // /2 width=1/
+| normalize #B #A #IHB #IHA #d1 #d2 #Hd12 #Hd21
+  >IHB -IHB // >IHA -IHA //
+]
+qed.
+
+theorem dsubst_lift_ge: ∀h,C,M,d1,d2. d1 + h ≤ d2 →
+                        [d2 ⬐ C] ↑[d1, h] M = ↑[d1, h] [d2 - h ⬐ C] M.
+#h #C #M elim M -M
+[ #i #d1 #d2 #Hd12 elim (lt_or_eq_or_gt i (d2-h)) #Hid2h
+  [ >(dsubst_vref_lt … Hid2h) elim (lt_or_ge i d1) #Hid1
+    [ lapply (lt_to_le_to_lt … (d1+h) Hid1 ?) -Hid2h // #Hid1h
+      lapply (lt_to_le_to_lt … Hid1h Hd12) -Hid1h -Hd12 #Hid2
+      >(lift_vref_lt … Hid1) -Hid1 /2 width=1/
+    | >(lift_vref_ge … Hid1) -Hid1 -Hd12 /3 width=1/
+    ]
+  | destruct elim (le_inv_plus_l … Hd12) -Hd12 #Hd12 #Hhd2
+    >dsubst_vref_eq >lift_vref_ge // >lift_lift_be // <plus_minus_m_m //
+  | elim (le_inv_plus_l … Hd12) -Hd12 #Hd12 #_
+    lapply (le_to_lt_to_lt … Hd12 Hid2h) -Hd12 #Hid1
+    lapply (ltn_to_ltO … Hid2h) #Hi
+    >(dsubst_vref_gt … Hid2h)
+    >lift_vref_ge /2 width=1/ >lift_vref_ge /2 width=1/ -Hid1
+    >dsubst_vref_gt /2 width=1/ -Hid2h >plus_minus //
+  ]
+| normalize #A #IHA #d1 #d2 #Hd12
+  elim (le_inv_plus_l … Hd12) #_ #Hhd2
+  >IHA -IHA /2 width=1/ <plus_minus //
+| normalize #B #A #IHB #IHA #d1 #d2 #Hd12
+  >IHB -IHB // >IHA -IHA //
+]
+qed.
+
+theorem subst_subst_ge: ∀C1,C2,M,d1,d2. d1 ≤ d2 →
+                        [d2 ⬐ C2] [d1 ⬐ C1] M = [d1 ⬐ [d2 - d1 ⬐ C2] C1] [d2 + 1 ⬐ C2] M.
+#C1 #C2 #M elim M -M
+[ #i #d1 #d2 #Hd12 elim (lt_or_eq_or_gt i d1) #Hid1
+  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 #Hid2
+    >(dsubst_vref_lt … Hid1) >(dsubst_vref_lt … Hid2) >dsubst_vref_lt /2 width=1/
+  | destruct >dsubst_vref_eq >dsubst_vref_lt /2 width=1/
+  | >(dsubst_vref_gt … Hid1) elim (lt_or_eq_or_gt i (d2+1)) #Hid2
+    [ lapply (ltn_to_ltO … Hid1) #Hi
+      >(dsubst_vref_lt … Hid2) >dsubst_vref_lt /2 width=1/
+    | destruct /2 width=1/
+    | lapply (le_to_lt_to_lt (d1+1) … Hid2) -Hid1 /2 width=1/ -Hd12 #Hid1
+      >(dsubst_vref_gt … Hid2) >dsubst_vref_gt /2 width=1/
+      >dsubst_vref_gt // /2 width=1/
+    ]
+  ]
+| normalize #A #IHA #d1 #d2 #Hd12
+  lapply (IHA (d1+1) (d2+1) ?) -IHA /2 width=1/
+| normalize #B #A #IHB #IHA #d1 #d2 #Hd12
+  >IHB -IHB // >IHA -IHA //
+]
+qed.
+
+theorem subst_subst_lt: ∀C1,C2,M,d1,d2. d2 < d1 →
+                        [d2 ⬐ [d1 - d2 -1 ⬐ C1] C2] [d1 ⬐ C1] M = [d1 - 1 ⬐ C1] [d2 ⬐ C2] M.
+#C1 #C2 #M #d1 #d2 #Hd21
+lapply (ltn_to_ltO … Hd21) #Hd1
+>subst_subst_ge in ⊢ (???%); /2 width=1/ <plus_minus_m_m //
+qed.
diff --git a/matita/matita/contribs/lambda/dsubst.ma b/matita/matita/contribs/lambda/dsubst.ma
deleted file mode 100644 (file)
index 4d686ef..0000000
+++ /dev/null
@@ -1,85 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "lift.ma".
-
-(* DELIFTING SUBSTITUTION ***************************************************)
-
-(* Policy: depth (level) metavariables: d, e (as for lift) *)
-let rec dsubst C d M on M ≝ match M with
-[ VRef i   ⇒ tri … i d (#i) (↑[i] C) (#(i-1))
-| Abst A   ⇒ 𝛌. (dsubst C (d+1) A)
-| Appl B A ⇒ @ (dsubst C d B). (dsubst C d A)
-].
-
-interpretation "delifting substitution"
-   'DSubst C d M = (dsubst C d M).
-
-(* Note: the notation with "/" does not work *)
-notation "hvbox( [ d ⬐ break C ] break term 55 M )"
-   non associative with precedence 55
-   for @{ 'DSubst $C $d $M }.
-
-notation > "hvbox( [ ⬐ C ] break term 55 M )"
-   non associative with precedence 55
-   for @{ 'DSubst $C 0 $M }.
-
-lemma dsubst_vref_lt: ∀i,d,C. i < d → [ d ⬐ C ] #i = #i.
-normalize /2 width=1/
-qed.
-
-lemma dsubst_vref_eq: ∀d,C. [ d ⬐ C ] #d = ↑[d]C.
-normalize //
-qed.
-
-lemma dsubst_vref_gt: ∀i,d,C. d < i → [ d ⬐ C ] #i = #(i-1).
-normalize /2 width=1/
-qed.
-
-theorem dsubst_lift_le: ∀h,C,M,d1,d2. d2 ≤ d1 →
-                        [ d2 ⬐ ↑[d1 - d2, h] C ] ↑[d1 + 1, h] M = ↑[d1, h] [ d2 ⬐ C ] M.
-#h #C #M elim M -M
-[ #i #d1 #d2 #Hd21 elim (lt_or_eq_or_gt i d2) #Hid2
-  [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 #Hid1
-    >(dsubst_vref_lt … Hid2) >(lift_vref_lt … Hid1) >lift_vref_lt /2 width=1/
-  | destruct >dsubst_vref_eq >lift_vref_lt /2 width=1/
-  | >(dsubst_vref_gt … Hid2) -Hd21 elim (lt_or_ge (i-1) d1) #Hi1d1
-    [ >(lift_vref_lt … Hi1d1) >lift_vref_lt /2 width=1/
-    | lapply (ltn_to_ltO … Hid2) #Hi
-      >(lift_vref_ge … Hi1d1) >lift_vref_ge /2 width=1/ -Hi1d1 >plus_minus // /3 width=1/
-    ]
-  ]
-| normalize #A #IHA #d1 #d2 #Hd21
-  lapply (IHA (d1+1) (d2+1) ?) -IHA /2 width=1/
-| normalize #B #A #IHB #IHA #d1 #d2 #Hd21
-  >IHB -IHB // >IHA -IHA //
-]
-qed.
-theorem dsubst_lift_be: ∀h,C,M,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h →
-                        [ d2 ⬐ C ] ↑[d1, h + 1] M = ↑[d1, h] M.
-#h #C #M elim M -M
-[ #i #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
-  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
-    >(lift_vref_lt … Hid1) >(lift_vref_lt … Hid1) /2 width=1/
-  | lapply (transitive_le … (i+h) Hd21 ?) -Hd12 -Hd21 /2 width=1/ #Hd2
-    >(lift_vref_ge … Hid1) >(lift_vref_ge … Hid1) -Hid1
-    >dsubst_vref_gt // /2 width=1/
-  ]
-| normalize #A #IHA #d1 #d2 #Hd12 #Hd21
-  >IHA -IHA // /2 width=1/
-| normalize #B #A #IHB #IHA #d1 #d2 #Hd12 #Hd21
-  >IHB -IHB // >IHA -IHA //
-]
-qed.
diff --git a/matita/matita/contribs/lambda/multiplicity.ma b/matita/matita/contribs/lambda/multiplicity.ma
new file mode 100644 (file)
index 0000000..d6d5af1
--- /dev/null
@@ -0,0 +1,52 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "delifting_substitution.ma".
+
+(* MULTIPLICITY *************************************************************)
+
+(* Note: this gives the number of variable references in M *)
+let rec mult M on M ≝ match M with
+[ VRef i   ⇒ 1
+| Abst A   ⇒ mult A
+| Appl B A ⇒ (mult B) + (mult A)
+].
+
+interpretation "multiplicity"
+   'Multiplicity M = (mult M).
+
+notation "hvbox( #{M} )"
+   non associative with precedence 55
+   for @{ 'Multiplicity $M }.
+
+lemma mult_positive: ∀M. 0 < #{M}.
+#M elim M -M // /2 width=1/
+qed.
+
+lemma mult_lift: ∀h,M,d. #{↑[d, h] M} = #{M}.
+#H #M elim M -M normalize //
+qed.
+
+theorem mult_dsubst: ∀C,M,d. #{[d ⬐ C] M} ≤ #{M} * #{C}.
+#C #M elim M -M
+[ #i #d elim (lt_or_eq_or_gt i d) #Hid
+  [ >(dsubst_vref_lt … Hid) normalize //
+  | destruct >dsubst_vref_eq normalize //
+  | >(dsubst_vref_gt … Hid) normalize //
+  ]
+| normalize //
+| normalize #B #A #IHB #IHA #d
+  >distributive_times_plus_r /2 width=1/
+]
+qed.