aux
;;
-let xml_of_attrs attributes =
+let xml_of_attrs generate_attributes attributes =
let class_of = function
| `Coercion n ->
Xml.xml_empty "class" [None,"value","coercion";None,"arity",string_of_int n]
List.fold_right
(fun attr res -> [< xml_attr_of attr ; res >]) attributes [<>]
in
- Xml.xml_nempty "attributes" [] xml_attrs
+ if generate_attributes then Xml.xml_nempty "attributes" [] xml_attrs else [<>]
-let print_object uri ?ids_to_inner_sorts ~ask_dtd_to_the_getter obj =
+let print_object uri
+ ?ids_to_inner_sorts ?(generate_attributes=true) ~ask_dtd_to_the_getter obj =
let module C = Cic in
let module X = Xml in
let module U = UriManager in
match obj with
C.ACurrentProof (id,idbody,n,conjectures,bo,ty,params,obj_attrs) ->
let params' = param_attribute_of_params params in
- let xml_attrs = xml_of_attrs obj_attrs in
+ let xml_attrs = xml_of_attrs generate_attributes obj_attrs in
let xml_for_current_proof_body =
(*CSC: Should the CurrentProof also have the list of variables it depends on? *)
(*CSC: I think so. Not implemented yet. *)
xmlty, Some xmlbo
| C.AConstant (id,idbody,n,bo,ty,params,obj_attrs) ->
let params' = param_attribute_of_params params in
- let xml_attrs = xml_of_attrs obj_attrs in
+ let xml_attrs = xml_of_attrs generate_attributes obj_attrs in
let xmlbo =
match bo with
None -> None
xmlty, xmlbo
| C.AVariable (id,n,bo,ty,params,obj_attrs) ->
let params' = param_attribute_of_params params in
- let xml_attrs = xml_of_attrs obj_attrs in
+ let xml_attrs = xml_of_attrs generate_attributes obj_attrs in
let xmlbo =
match bo with
None -> [< >]
aobj, None
| C.AInductiveDefinition (id,tys,params,nparams,obj_attrs) ->
let params' = param_attribute_of_params params in
- let xml_attrs = xml_of_attrs obj_attrs in
+ let xml_attrs = xml_of_attrs generate_attributes obj_attrs in
[< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
X.xml_cdata
("<!DOCTYPE InductiveDefinition SYSTEM \"" ^ dtdname ^ "\">\n") ;
val print_object :
UriManager.uri ->
?ids_to_inner_sorts: (string, Cic2acic.sort_kind) Hashtbl.t ->
+ ?generate_attributes:bool ->
ask_dtd_to_the_getter:bool ->
Cic.annobj ->
Xml.token Stream.t * Xml.token Stream.t option
HExtlib.mkdir dir
in
(* generate annobj, ids_to_inner_sorts and ids_to_inner_types *)
- let annobj, innertypes, ids_to_inner_sorts =
+ let annobj, innertypes, ids_to_inner_sorts, generate_attributes =
if Helm_registry.get_bool "matita.system" then
let annobj, _, _, ids_to_inner_sorts, ids_to_inner_types, _, _ =
Cic2acic.acic_object_of_cic_object obj
Cic2Xml.print_inner_types
uri ~ids_to_inner_sorts ~ids_to_inner_types ~ask_dtd_to_the_getter:false
in
- annobj, Some innertypesxml, Some ids_to_inner_sorts
+ annobj, Some innertypesxml, Some ids_to_inner_sorts, false
else
let annobj = Cic2acic.plain_acic_object_of_cic_object obj in
- annobj, None, None
+ annobj, None, None, true
in
(* prepare XML *)
let xml, bodyxml =
Cic2Xml.print_object
- uri ?ids_to_inner_sorts ~ask_dtd_to_the_getter:false annobj
+ uri ?ids_to_inner_sorts ~ask_dtd_to_the_getter:false
+ ~generate_attributes annobj
in
let xmlpath, xmlbodypath, innertypespath, bodyuri, innertypesuri,
xmlunivgraphpath, univgraphuri =
H7))))) H4))))))))))) (\lambda (c0: C).(\lambda (t3: T).(\lambda (t4:
T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: (ex2 A (\lambda (a1:
A).(arity g c0 t3 a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
-a1))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4 t0)).(\lambda (_: (ex2 A
+a1))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4 t0)).(\lambda (H3: (ex2 A
(\lambda (a1: A).(arity g c0 t4 a1)) (\lambda (a1: A).(arity g c0 t0 (asucc g
a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 t3 a1))
(\lambda (a1: A).(arity g c0 t4 (asucc g a1))) (ex2 A (\lambda (a1: A).(arity
-g c0 (THead (Flat Cast) t4 t3) a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
-a1)))) (\lambda (x: A).(\lambda (H5: (arity g c0 t3 x)).(\lambda (H6: (arity
-g c0 t4 (asucc g x))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Flat
-Cast) t4 t3) a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g a1))) x
-(arity_cast g c0 t4 x H6 t3 H5) H6)))) H4)))))))))) c t1 t2 H))))).
+g c0 (THead (Flat Cast) t4 t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat
+Cast) t0 t4) (asucc g a1)))) (\lambda (x: A).(\lambda (H5: (arity g c0 t3
+x)).(\lambda (H6: (arity g c0 t4 (asucc g x))).(let H7 \def H3 in (ex2_ind A
+(\lambda (a1: A).(arity g c0 t4 a1)) (\lambda (a1: A).(arity g c0 t0 (asucc g
+a1))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Cast) t4 t3) a1))
+(\lambda (a1: A).(arity g c0 (THead (Flat Cast) t0 t4) (asucc g a1))))
+(\lambda (x0: A).(\lambda (H8: (arity g c0 t4 x0)).(\lambda (H9: (arity g c0
+t0 (asucc g x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Flat
+Cast) t4 t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Cast) t0 t4)
+(asucc g a1))) x (arity_cast g c0 t4 x H6 t3 H5) (arity_cast g c0 t0 (asucc g
+x) (arity_repl g c0 t0 (asucc g x0) H9 (asucc g (asucc g x)) (asucc_repl g x0
+(asucc g x) (arity_mono g c0 t4 x0 H8 (asucc g x) H6))) t4 H6))))) H7)))))
+H4)))))))))) c t1 t2 H))))).
t)).(or_introl (ex T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t t0)
t3))) (\forall (t3: T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to (\forall
(P: Prop).P))) (ex_intro T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t
-t0) t3)) t (ty3_cast g c2 t0 t (ty3_conv g c2 t x H6 t0 x0 H9 H12) x H6))))
-(\lambda (H12: (((pc3 c2 x0 t) \to (\forall (P: Prop).P)))).(or_intror (ex T
-(\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t t0) t3))) (\forall (t3:
-T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to (\forall (P: Prop).P)))
-(\lambda (t3: T).(\lambda (H13: (ty3 g c2 (THead (Flat Cast) t t0)
-t3)).(\lambda (P: Prop).(and_ind (pc3 c2 t t3) (ty3 g c2 t0 t) P (\lambda (_:
-(pc3 c2 t t3)).(\lambda (H15: (ty3 g c2 t0 t)).(let H_y \def (ty3_unique g c2
-t0 t H15 x0 H9) in (H12 (pc3_s c2 x0 t H_y) P)))) (ty3_gen_cast g c2 t0 t t3
-H13))))))) H11))))) (ty3_correct g c2 t0 x0 H9)))) H8)) (\lambda (H8:
-((\forall (t3: T).((ty3 g c2 t0 t3) \to (\forall (P: Prop).P))))).(or_intror
-(ex T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t t0) t3))) (\forall (t3:
-T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to (\forall (P: Prop).P)))
-(\lambda (t3: T).(\lambda (H9: (ty3 g c2 (THead (Flat Cast) t t0)
-t3)).(\lambda (P: Prop).(and_ind (pc3 c2 t t3) (ty3 g c2 t0 t) P (\lambda (_:
-(pc3 c2 t t3)).(\lambda (H11: (ty3 g c2 t0 t)).(H8 t H11 P))) (ty3_gen_cast g
-c2 t0 t t3 H9))))))) H7)))) H5)) (\lambda (H5: ((\forall (t3: T).((ty3 g c2 t
-t3) \to (\forall (P: Prop).P))))).(or_intror (ex T (\lambda (t3: T).(ty3 g c2
-(THead (Flat Cast) t t0) t3))) (\forall (t3: T).((ty3 g c2 (THead (Flat Cast)
-t t0) t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(\lambda (H6: (ty3 g
-c2 (THead (Flat Cast) t t0) t3)).(\lambda (P: Prop).(and_ind (pc3 c2 t t3)
-(ty3 g c2 t0 t) P (\lambda (_: (pc3 c2 t t3)).(\lambda (H8: (ty3 g c2 t0
-t)).(ex_ind T (\lambda (t4: T).(ty3 g c2 t t4)) P (\lambda (x: T).(\lambda
-(H9: (ty3 g c2 t x)).(H5 x H9 P))) (ty3_correct g c2 t0 t H8))))
+t0) t3)) (THead (Flat Cast) x t) (ty3_cast g c2 t0 t (ty3_conv g c2 t x H6 t0
+x0 H9 H12) x H6)))) (\lambda (H12: (((pc3 c2 x0 t) \to (\forall (P:
+Prop).P)))).(or_intror (ex T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t
+t0) t3))) (\forall (t3: T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to
+(\forall (P: Prop).P))) (\lambda (t3: T).(\lambda (H13: (ty3 g c2 (THead
+(Flat Cast) t t0) t3)).(\lambda (P: Prop).(ex3_ind T (\lambda (t4: T).(pc3 c2
+(THead (Flat Cast) t4 t) t3)) (\lambda (_: T).(ty3 g c2 t0 t)) (\lambda (t4:
+T).(ty3 g c2 t t4)) P (\lambda (x2: T).(\lambda (_: (pc3 c2 (THead (Flat
+Cast) x2 t) t3)).(\lambda (H15: (ty3 g c2 t0 t)).(\lambda (H16: (ty3 g c2 t
+x2)).(let H_y \def (ty3_unique g c2 t x2 H16 x H6) in (let H_y0 \def
+(ty3_unique g c2 t0 t H15 x0 H9) in (H12 (pc3_s c2 x0 t H_y0) P)))))))
+(ty3_gen_cast g c2 t0 t t3 H13))))))) H11))))) (ty3_correct g c2 t0 x0 H9))))
+H8)) (\lambda (H8: ((\forall (t3: T).((ty3 g c2 t0 t3) \to (\forall (P:
+Prop).P))))).(or_intror (ex T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t
+t0) t3))) (\forall (t3: T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to
+(\forall (P: Prop).P))) (\lambda (t3: T).(\lambda (H9: (ty3 g c2 (THead (Flat
+Cast) t t0) t3)).(\lambda (P: Prop).(ex3_ind T (\lambda (t4: T).(pc3 c2
+(THead (Flat Cast) t4 t) t3)) (\lambda (_: T).(ty3 g c2 t0 t)) (\lambda (t4:
+T).(ty3 g c2 t t4)) P (\lambda (x0: T).(\lambda (_: (pc3 c2 (THead (Flat
+Cast) x0 t) t3)).(\lambda (H11: (ty3 g c2 t0 t)).(\lambda (_: (ty3 g c2 t
+x0)).(H8 t H11 P))))) (ty3_gen_cast g c2 t0 t t3 H9))))))) H7)))) H5))
+(\lambda (H5: ((\forall (t3: T).((ty3 g c2 t t3) \to (\forall (P:
+Prop).P))))).(or_intror (ex T (\lambda (t3: T).(ty3 g c2 (THead (Flat Cast) t
+t0) t3))) (\forall (t3: T).((ty3 g c2 (THead (Flat Cast) t t0) t3) \to
+(\forall (P: Prop).P))) (\lambda (t3: T).(\lambda (H6: (ty3 g c2 (THead (Flat
+Cast) t t0) t3)).(\lambda (P: Prop).(ex3_ind T (\lambda (t4: T).(pc3 c2
+(THead (Flat Cast) t4 t) t3)) (\lambda (_: T).(ty3 g c2 t0 t)) (\lambda (t4:
+T).(ty3 g c2 t t4)) P (\lambda (x0: T).(\lambda (_: (pc3 c2 (THead (Flat
+Cast) x0 t) t3)).(\lambda (_: (ty3 g c2 t0 t)).(\lambda (H9: (ty3 g c2 t
+x0)).(ex_ind T (\lambda (t4: T).(ty3 g c2 x0 t4)) P (\lambda (x: T).(\lambda
+(_: (ty3 g c2 x0 x)).(H5 x0 H9 P))) (ty3_correct g c2 t x0 H9))))))
(ty3_gen_cast g c2 t0 t t3 H6))))))) H4))) f H2))) k H1))))))) t2))) c t1))).
t)))))))))
| ty3_cast: \forall (c: C).(\forall (t1: T).(\forall (t2: T).((ty3 g c t1 t2)
\to (\forall (t0: T).((ty3 g c t2 t0) \to (ty3 g c (THead (Flat Cast) t2 t1)
-t2)))))).
+(THead (Flat Cast) t0 t2))))))).
T).(\lambda (c2: C).(\lambda (t4: T).(\lambda (H4: (fsubst0 i u c (THead
(Flat Cast) t3 t2) c2 t4)).(fsubst0_ind i u c (THead (Flat Cast) t3 t2)
(\lambda (c0: C).(\lambda (t5: T).(\forall (e: C).((getl i c (CHead e (Bind
-Abbr) u)) \to (ty3 g c0 t5 t3))))) (\lambda (t5: T).(\lambda (H5: (subst0 i u
-(THead (Flat Cast) t3 t2) t5)).(\lambda (e: C).(\lambda (H6: (getl i c (CHead
-e (Bind Abbr) u))).(or3_ind (ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat
-Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2))) (ex2 T (\lambda (t6:
-T).(eq T t5 (THead (Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat
-Cast) i) u t2 t6))) (ex3_2 T T (\lambda (u2: T).(\lambda (t6: T).(eq T t5
-(THead (Flat Cast) u2 t6)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u t3
-u2))) (\lambda (_: T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6))))
-(ty3 g c t5 t3) (\lambda (H7: (ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat
-Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2)))).(ex2_ind T (\lambda
+Abbr) u)) \to (ty3 g c0 t5 (THead (Flat Cast) t0 t3)))))) (\lambda (t5:
+T).(\lambda (H5: (subst0 i u (THead (Flat Cast) t3 t2) t5)).(\lambda (e:
+C).(\lambda (H6: (getl i c (CHead e (Bind Abbr) u))).(or3_ind (ex2 T (\lambda
(u2: T).(eq T t5 (THead (Flat Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3
-u2)) (ty3 g c t5 t3) (\lambda (x: T).(\lambda (H8: (eq T t5 (THead (Flat
-Cast) x t2))).(\lambda (H9: (subst0 i u t3 x)).(eq_ind_r T (THead (Flat Cast)
-x t2) (\lambda (t6: T).(ty3 g c t6 t3)) (ty3_conv g c t3 t0 H2 (THead (Flat
-Cast) x t2) x (ty3_cast g c t2 x (ty3_conv g c x t0 (H3 i u c x (fsubst0_snd
-i u c t3 x H9) e H6) t2 t3 H0 (pc3_s c t3 x (pc3_fsubst0 c t3 t3 (pc3_refl c
-t3) i u c x (fsubst0_snd i u c t3 x H9) e H6))) t0 (H3 i u c x (fsubst0_snd i
-u c t3 x H9) e H6)) (pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c x (fsubst0_snd
-i u c t3 x H9) e H6)) t5 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t6:
-T).(eq T t5 (THead (Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat
-Cast) i) u t2 t6)))).(ex2_ind T (\lambda (t6: T).(eq T t5 (THead (Flat Cast)
-t3 t6))) (\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6)) (ty3 g c t5 t3)
-(\lambda (x: T).(\lambda (H8: (eq T t5 (THead (Flat Cast) t3 x))).(\lambda
-(H9: (subst0 (s (Flat Cast) i) u t2 x)).(eq_ind_r T (THead (Flat Cast) t3 x)
-(\lambda (t6: T).(ty3 g c t6 t3)) (ty3_cast g c x t3 (H1 (s (Flat Cast) i) u
-c x (fsubst0_snd (s (Flat Cast) i) u c t2 x H9) e H6) t0 H2) t5 H8)))) H7))
+u2))) (ex2 T (\lambda (t6: T).(eq T t5 (THead (Flat Cast) t3 t6))) (\lambda
+(t6: T).(subst0 (s (Flat Cast) i) u t2 t6))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast) u2 t6)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_: T).(\lambda (t6:
+T).(subst0 (s (Flat Cast) i) u t2 t6)))) (ty3 g c t5 (THead (Flat Cast) t0
+t3)) (\lambda (H7: (ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat Cast) u2
+t2))) (\lambda (u2: T).(subst0 i u t3 u2)))).(ex2_ind T (\lambda (u2: T).(eq
+T t5 (THead (Flat Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2)) (ty3 g
+c t5 (THead (Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H8: (eq T t5 (THead
+(Flat Cast) x t2))).(\lambda (H9: (subst0 i u t3 x)).(eq_ind_r T (THead (Flat
+Cast) x t2) (\lambda (t6: T).(ty3 g c t6 (THead (Flat Cast) t0 t3))) (ex_ind
+T (\lambda (t6: T).(ty3 g c t0 t6)) (ty3 g c (THead (Flat Cast) x t2) (THead
+(Flat Cast) t0 t3)) (\lambda (x0: T).(\lambda (H10: (ty3 g c t0
+x0)).(ty3_conv g c (THead (Flat Cast) t0 t3) (THead (Flat Cast) x0 t0)
+(ty3_cast g c t3 t0 H2 x0 H10) (THead (Flat Cast) x t2) (THead (Flat Cast) t0
+x) (ty3_cast g c t2 x (ty3_conv g c x t0 (H3 i u c x (fsubst0_snd i u c t3 x
+H9) e H6) t2 t3 H0 (pc3_s c t3 x (pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c x
+(fsubst0_snd i u c t3 x H9) e H6))) t0 (H3 i u c x (fsubst0_snd i u c t3 x
+H9) e H6)) (pc3_fsubst0 c (THead (Flat Cast) t0 t3) (THead (Flat Cast) t0 t3)
+(pc3_refl c (THead (Flat Cast) t0 t3)) i u c (THead (Flat Cast) t0 x)
+(fsubst0_snd i u c (THead (Flat Cast) t0 t3) (THead (Flat Cast) t0 x)
+(subst0_snd (Flat Cast) u x t3 i H9 t0)) e H6)))) (ty3_correct g c x t0 (H3 i
+u c x (fsubst0_snd i u c t3 x H9) e H6))) t5 H8)))) H7)) (\lambda (H7: (ex2 T
+(\lambda (t6: T).(eq T t5 (THead (Flat Cast) t3 t6))) (\lambda (t6:
+T).(subst0 (s (Flat Cast) i) u t2 t6)))).(ex2_ind T (\lambda (t6: T).(eq T t5
+(THead (Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2
+t6)) (ty3 g c t5 (THead (Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H8: (eq
+T t5 (THead (Flat Cast) t3 x))).(\lambda (H9: (subst0 (s (Flat Cast) i) u t2
+x)).(eq_ind_r T (THead (Flat Cast) t3 x) (\lambda (t6: T).(ty3 g c t6 (THead
+(Flat Cast) t0 t3))) (ty3_cast g c x t3 (H1 (s (Flat Cast) i) u c x
+(fsubst0_snd (s (Flat Cast) i) u c t2 x H9) e H6) t0 H2) t5 H8)))) H7))
(\lambda (H7: (ex3_2 T T (\lambda (u2: T).(\lambda (t6: T).(eq T t5 (THead
(Flat Cast) u2 t6)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u t3 u2)))
(\lambda (_: T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2
t6))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t6: T).(eq T t5 (THead
(Flat Cast) u2 t6)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u t3 u2)))
(\lambda (_: T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6))) (ty3 g
-c t5 t3) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H8: (eq T t5 (THead
-(Flat Cast) x0 x1))).(\lambda (H9: (subst0 i u t3 x0)).(\lambda (H10: (subst0
-(s (Flat Cast) i) u t2 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda
-(t6: T).(ty3 g c t6 t3)) (ty3_conv g c t3 t0 H2 (THead (Flat Cast) x0 x1) x0
-(ty3_cast g c x1 x0 (ty3_conv g c x0 t0 (H3 i u c x0 (fsubst0_snd i u c t3 x0
-H9) e H6) x1 t3 (H1 (s (Flat Cast) i) u c x1 (fsubst0_snd (s (Flat Cast) i) u
-c t2 x1 H10) e H6) (pc3_s c t3 x0 (pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c
-x0 (fsubst0_snd i u c t3 x0 H9) e H6))) t0 (H3 i u c x0 (fsubst0_snd i u c t3
-x0 H9) e H6)) (pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c x0 (fsubst0_snd i u
-c t3 x0 H9) e H6)) t5 H8)))))) H7)) (subst0_gen_head (Flat Cast) u t3 t2 t5 i
-H5)))))) (\lambda (c3: C).(\lambda (H5: (csubst0 i u c c3)).(\lambda (e:
-C).(\lambda (H6: (getl i c (CHead e (Bind Abbr) u))).(ty3_cast g c3 t2 t3 (H1
-i u c3 t2 (fsubst0_fst i u c t2 c3 H5) e H6) t0 (H3 i u c3 t3 (fsubst0_fst i
-u c t3 c3 H5) e H6)))))) (\lambda (t5: T).(\lambda (H5: (subst0 i u (THead
-(Flat Cast) t3 t2) t5)).(\lambda (c3: C).(\lambda (H6: (csubst0 i u c
-c3)).(\lambda (e: C).(\lambda (H7: (getl i c (CHead e (Bind Abbr)
-u))).(or3_ind (ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat Cast) u2 t2)))
-(\lambda (u2: T).(subst0 i u t3 u2))) (ex2 T (\lambda (t6: T).(eq T t5 (THead
-(Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6)))
-(ex3_2 T T (\lambda (u2: T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast) u2
-t6)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_:
-T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6)))) (ty3 g c3 t5 t3)
-(\lambda (H8: (ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat Cast) u2 t2)))
-(\lambda (u2: T).(subst0 i u t3 u2)))).(ex2_ind T (\lambda (u2: T).(eq T t5
-(THead (Flat Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2)) (ty3 g c3 t5
-t3) (\lambda (x: T).(\lambda (H9: (eq T t5 (THead (Flat Cast) x
+c t5 (THead (Flat Cast) t0 t3)) (\lambda (x0: T).(\lambda (x1: T).(\lambda
+(H8: (eq T t5 (THead (Flat Cast) x0 x1))).(\lambda (H9: (subst0 i u t3
+x0)).(\lambda (H10: (subst0 (s (Flat Cast) i) u t2 x1)).(eq_ind_r T (THead
+(Flat Cast) x0 x1) (\lambda (t6: T).(ty3 g c t6 (THead (Flat Cast) t0 t3)))
+(ex_ind T (\lambda (t6: T).(ty3 g c t0 t6)) (ty3 g c (THead (Flat Cast) x0
+x1) (THead (Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H11: (ty3 g c t0
+x)).(ty3_conv g c (THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0)
+(ty3_cast g c t3 t0 H2 x H11) (THead (Flat Cast) x0 x1) (THead (Flat Cast) t0
+x0) (ty3_cast g c x1 x0 (ty3_conv g c x0 t0 (H3 i u c x0 (fsubst0_snd i u c
+t3 x0 H9) e H6) x1 t3 (H1 (s (Flat Cast) i) u c x1 (fsubst0_snd (s (Flat
+Cast) i) u c t2 x1 H10) e H6) (pc3_s c t3 x0 (pc3_fsubst0 c t3 t3 (pc3_refl c
+t3) i u c x0 (fsubst0_snd i u c t3 x0 H9) e H6))) t0 (H3 i u c x0
+(fsubst0_snd i u c t3 x0 H9) e H6)) (pc3_fsubst0 c (THead (Flat Cast) t0 t3)
+(THead (Flat Cast) t0 t3) (pc3_refl c (THead (Flat Cast) t0 t3)) i u c (THead
+(Flat Cast) t0 x0) (fsubst0_snd i u c (THead (Flat Cast) t0 t3) (THead (Flat
+Cast) t0 x0) (subst0_snd (Flat Cast) u x0 t3 i H9 t0)) e H6)))) (ty3_correct
+g c x0 t0 (H3 i u c x0 (fsubst0_snd i u c t3 x0 H9) e H6))) t5 H8)))))) H7))
+(subst0_gen_head (Flat Cast) u t3 t2 t5 i H5)))))) (\lambda (c3: C).(\lambda
+(H5: (csubst0 i u c c3)).(\lambda (e: C).(\lambda (H6: (getl i c (CHead e
+(Bind Abbr) u))).(ty3_cast g c3 t2 t3 (H1 i u c3 t2 (fsubst0_fst i u c t2 c3
+H5) e H6) t0 (H3 i u c3 t3 (fsubst0_fst i u c t3 c3 H5) e H6)))))) (\lambda
+(t5: T).(\lambda (H5: (subst0 i u (THead (Flat Cast) t3 t2) t5)).(\lambda
+(c3: C).(\lambda (H6: (csubst0 i u c c3)).(\lambda (e: C).(\lambda (H7: (getl
+i c (CHead e (Bind Abbr) u))).(or3_ind (ex2 T (\lambda (u2: T).(eq T t5
+(THead (Flat Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2))) (ex2 T
+(\lambda (t6: T).(eq T t5 (THead (Flat Cast) t3 t6))) (\lambda (t6:
+T).(subst0 (s (Flat Cast) i) u t2 t6))) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t6: T).(eq T t5 (THead (Flat Cast) u2 t6)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i u t3 u2))) (\lambda (_: T).(\lambda (t6: T).(subst0 (s (Flat
+Cast) i) u t2 t6)))) (ty3 g c3 t5 (THead (Flat Cast) t0 t3)) (\lambda (H8:
+(ex2 T (\lambda (u2: T).(eq T t5 (THead (Flat Cast) u2 t2))) (\lambda (u2:
+T).(subst0 i u t3 u2)))).(ex2_ind T (\lambda (u2: T).(eq T t5 (THead (Flat
+Cast) u2 t2))) (\lambda (u2: T).(subst0 i u t3 u2)) (ty3 g c3 t5 (THead (Flat
+Cast) t0 t3)) (\lambda (x: T).(\lambda (H9: (eq T t5 (THead (Flat Cast) x
t2))).(\lambda (H10: (subst0 i u t3 x)).(eq_ind_r T (THead (Flat Cast) x t2)
-(\lambda (t6: T).(ty3 g c3 t6 t3)) (ty3_conv g c3 t3 t0 (H3 i u c3 t3
-(fsubst0_fst i u c t3 c3 H6) e H7) (THead (Flat Cast) x t2) x (ty3_cast g c3
-t2 x (ty3_conv g c3 x t0 (H3 i u c3 x (fsubst0_both i u c t3 x H10 c3 H6) e
-H7) t2 t3 (H1 i u c3 t2 (fsubst0_fst i u c t2 c3 H6) e H7) (pc3_s c3 t3 x
-(pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c3 x (fsubst0_both i u c t3 x H10 c3
-H6) e H7))) t0 (H3 i u c3 x (fsubst0_both i u c t3 x H10 c3 H6) e H7))
-(pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c3 x (fsubst0_both i u c t3 x H10 c3
-H6) e H7)) t5 H9)))) H8)) (\lambda (H8: (ex2 T (\lambda (t6: T).(eq T t5
-(THead (Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2
+(\lambda (t6: T).(ty3 g c3 t6 (THead (Flat Cast) t0 t3))) (ex_ind T (\lambda
+(t6: T).(ty3 g c3 t0 t6)) (ty3 g c3 (THead (Flat Cast) x t2) (THead (Flat
+Cast) t0 t3)) (\lambda (x0: T).(\lambda (H11: (ty3 g c3 t0 x0)).(ty3_conv g
+c3 (THead (Flat Cast) t0 t3) (THead (Flat Cast) x0 t0) (ty3_cast g c3 t3 t0
+(H3 i u c3 t3 (fsubst0_fst i u c t3 c3 H6) e H7) x0 H11) (THead (Flat Cast) x
+t2) (THead (Flat Cast) t0 x) (ty3_cast g c3 t2 x (ty3_conv g c3 x t0 (H3 i u
+c3 x (fsubst0_both i u c t3 x H10 c3 H6) e H7) t2 t3 (H1 i u c3 t2
+(fsubst0_fst i u c t2 c3 H6) e H7) (pc3_s c3 t3 x (pc3_fsubst0 c t3 t3
+(pc3_refl c t3) i u c3 x (fsubst0_both i u c t3 x H10 c3 H6) e H7))) t0 (H3 i
+u c3 x (fsubst0_both i u c t3 x H10 c3 H6) e H7)) (pc3_fsubst0 c (THead (Flat
+Cast) t0 t3) (THead (Flat Cast) t0 t3) (pc3_refl c (THead (Flat Cast) t0 t3))
+i u c3 (THead (Flat Cast) t0 x) (fsubst0_both i u c (THead (Flat Cast) t0 t3)
+(THead (Flat Cast) t0 x) (subst0_snd (Flat Cast) u x t3 i H10 t0) c3 H6) e
+H7)))) (ty3_correct g c3 t3 t0 (H3 i u c3 t3 (fsubst0_fst i u c t3 c3 H6) e
+H7))) t5 H9)))) H8)) (\lambda (H8: (ex2 T (\lambda (t6: T).(eq T t5 (THead
+(Flat Cast) t3 t6))) (\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2
t6)))).(ex2_ind T (\lambda (t6: T).(eq T t5 (THead (Flat Cast) t3 t6)))
-(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6)) (ty3 g c3 t5 t3)
-(\lambda (x: T).(\lambda (H9: (eq T t5 (THead (Flat Cast) t3 x))).(\lambda
-(H10: (subst0 (s (Flat Cast) i) u t2 x)).(eq_ind_r T (THead (Flat Cast) t3 x)
-(\lambda (t6: T).(ty3 g c3 t6 t3)) (ty3_cast g c3 x t3 (H1 i u c3 x
-(fsubst0_both i u c t2 x H10 c3 H6) e H7) t0 (H3 i u c3 t3 (fsubst0_fst i u c
-t3 c3 H6) e H7)) t5 H9)))) H8)) (\lambda (H8: (ex3_2 T T (\lambda (u2:
-T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast) u2 t6)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_: T).(\lambda (t6:
-T).(subst0 (s (Flat Cast) i) u t2 t6))))).(ex3_2_ind T T (\lambda (u2:
-T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast) u2 t6)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_: T).(\lambda (t6:
-T).(subst0 (s (Flat Cast) i) u t2 t6))) (ty3 g c3 t5 t3) (\lambda (x0:
-T).(\lambda (x1: T).(\lambda (H9: (eq T t5 (THead (Flat Cast) x0
-x1))).(\lambda (H10: (subst0 i u t3 x0)).(\lambda (H11: (subst0 (s (Flat
-Cast) i) u t2 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t6:
-T).(ty3 g c3 t6 t3)) (ty3_conv g c3 t3 t0 (H3 i u c3 t3 (fsubst0_fst i u c t3
-c3 H6) e H7) (THead (Flat Cast) x0 x1) x0 (ty3_cast g c3 x1 x0 (ty3_conv g c3
-x0 t0 (H3 i u c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e H7) x1 t3 (H1 i u
-c3 x1 (fsubst0_both i u c t2 x1 H11 c3 H6) e H7) (pc3_s c3 t3 x0 (pc3_fsubst0
-c t3 t3 (pc3_refl c t3) i u c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e
-H7))) t0 (H3 i u c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e H7))
-(pc3_fsubst0 c t3 t3 (pc3_refl c t3) i u c3 x0 (fsubst0_both i u c t3 x0 H10
-c3 H6) e H7)) t5 H9)))))) H8)) (subst0_gen_head (Flat Cast) u t3 t2 t5 i
-H5)))))))) c2 t4 H4)))))))))))))) c1 t1 t H))))).
+(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6)) (ty3 g c3 t5 (THead
+(Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H9: (eq T t5 (THead (Flat Cast)
+t3 x))).(\lambda (H10: (subst0 (s (Flat Cast) i) u t2 x)).(eq_ind_r T (THead
+(Flat Cast) t3 x) (\lambda (t6: T).(ty3 g c3 t6 (THead (Flat Cast) t0 t3)))
+(ty3_cast g c3 x t3 (H1 i u c3 x (fsubst0_both i u c t2 x H10 c3 H6) e H7) t0
+(H3 i u c3 t3 (fsubst0_fst i u c t3 c3 H6) e H7)) t5 H9)))) H8)) (\lambda
+(H8: (ex3_2 T T (\lambda (u2: T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast)
+u2 t6)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_:
+T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t6: T).(eq T t5 (THead (Flat Cast) u2 t6))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u t3 u2))) (\lambda (_:
+T).(\lambda (t6: T).(subst0 (s (Flat Cast) i) u t2 t6))) (ty3 g c3 t5 (THead
+(Flat Cast) t0 t3)) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H9: (eq T t5
+(THead (Flat Cast) x0 x1))).(\lambda (H10: (subst0 i u t3 x0)).(\lambda (H11:
+(subst0 (s (Flat Cast) i) u t2 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1)
+(\lambda (t6: T).(ty3 g c3 t6 (THead (Flat Cast) t0 t3))) (ex_ind T (\lambda
+(t6: T).(ty3 g c3 t0 t6)) (ty3 g c3 (THead (Flat Cast) x0 x1) (THead (Flat
+Cast) t0 t3)) (\lambda (x: T).(\lambda (H12: (ty3 g c3 t0 x)).(ty3_conv g c3
+(THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0) (ty3_cast g c3 t3 t0 (H3 i
+u c3 t3 (fsubst0_fst i u c t3 c3 H6) e H7) x H12) (THead (Flat Cast) x0 x1)
+(THead (Flat Cast) t0 x0) (ty3_cast g c3 x1 x0 (ty3_conv g c3 x0 t0 (H3 i u
+c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e H7) x1 t3 (H1 i u c3 x1
+(fsubst0_both i u c t2 x1 H11 c3 H6) e H7) (pc3_s c3 t3 x0 (pc3_fsubst0 c t3
+t3 (pc3_refl c t3) i u c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e H7))) t0
+(H3 i u c3 x0 (fsubst0_both i u c t3 x0 H10 c3 H6) e H7)) (pc3_fsubst0 c
+(THead (Flat Cast) t0 t3) (THead (Flat Cast) t0 t3) (pc3_refl c (THead (Flat
+Cast) t0 t3)) i u c3 (THead (Flat Cast) t0 x0) (fsubst0_both i u c (THead
+(Flat Cast) t0 t3) (THead (Flat Cast) t0 x0) (subst0_snd (Flat Cast) u x0 t3
+i H10 t0) c3 H6) e H7)))) (ty3_correct g c3 t3 t0 (H3 i u c3 t3 (fsubst0_fst
+i u c t3 c3 H6) e H7))) t5 H9)))))) H8)) (subst0_gen_head (Flat Cast) u t3 t2
+t5 i H5)))))))) c2 t4 H4)))))))))))))) c1 t1 t H))))).
theorem ty3_csubst0:
\forall (g: G).(\forall (c1: C).(\forall (t1: T).(\forall (t2: T).((ty3 g c1
n))).(let H6 \def (eq_ind T (THead (Flat Cast) t2 t1) (\lambda (ee: T).(match
ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n)
-H5) in (False_ind (pc3 c0 (TSort (next g n)) t2) H6))))))))))) c y x H0)))
-H))))).
+H5) in (False_ind (pc3 c0 (TSort (next g n)) (THead (Flat Cast) t0 t2))
+H6))))))))))) c y x H0))) H))))).
theorem ty3_gen_lref:
\forall (g: G).(\forall (c: C).(\forall (x: T).(\forall (n: nat).((ty3 g c
with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _
_) \Rightarrow True])) I (TLRef n) H5) in (False_ind (or (ex3_3 C T T
(\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(pc3 c0 (lift (S n) O t)
-t2)))) (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e
-(Bind Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(ty3 g e u
-t))))) (ex3_3 C T T (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(pc3 c0
-(lift (S n) O u) t2)))) (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl
-n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t:
-T).(ty3 g e u t)))))) H6))))))))))) c y x H0))) H))))).
+(THead (Flat Cast) t0 t2))))) (\lambda (e: C).(\lambda (u: T).(\lambda (_:
+T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
+T).(\lambda (t: T).(ty3 g e u t))))) (ex3_3 C T T (\lambda (_: C).(\lambda
+(u: T).(\lambda (_: T).(pc3 c0 (lift (S n) O u) (THead (Flat Cast) t0 t2)))))
+(\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
+Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(ty3 g e u
+t)))))) H6))))))))))) c y x H0))) H))))).
theorem ty3_gen_bind:
\forall (g: G).(\forall (b: B).(\forall (c: C).(\forall (u: T).(\forall (t1:
\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u t1)
H5) in (False_ind (ex4_3 T T T (\lambda (t4: T).(\lambda (_: T).(\lambda (_:
-T).(pc3 c0 (THead (Bind b) u t4) t2)))) (\lambda (_: T).(\lambda (t:
-T).(\lambda (_: T).(ty3 g c0 u t)))) (\lambda (t4: T).(\lambda (_:
-T).(\lambda (_: T).(ty3 g (CHead c0 (Bind b) u) t1 t4)))) (\lambda (t4:
-T).(\lambda (_: T).(\lambda (t5: T).(ty3 g (CHead c0 (Bind b) u) t4 t5)))))
-H6))))))))))) c y x H0))) H))))))).
+T).(pc3 c0 (THead (Bind b) u t4) (THead (Flat Cast) t3 t2))))) (\lambda (_:
+T).(\lambda (t: T).(\lambda (_: T).(ty3 g c0 u t)))) (\lambda (t4:
+T).(\lambda (_: T).(\lambda (_: T).(ty3 g (CHead c0 (Bind b) u) t1 t4))))
+(\lambda (t4: T).(\lambda (_: T).(\lambda (t5: T).(ty3 g (CHead c0 (Bind b)
+u) t4 t5))))) H6))))))))))) c y x H0))) H))))))).
theorem ty3_gen_appl:
\forall (g: G).(\forall (c: C).(\forall (w: T).(\forall (v: T).(\forall (x:
in F return (\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast
\Rightarrow True])])])) I (THead (Flat Appl) w v) H5) in (False_ind (ex3_2 T
T (\lambda (u: T).(\lambda (t: T).(pc3 c0 (THead (Flat Appl) w (THead (Bind
-Abst) u t)) t2))) (\lambda (u: T).(\lambda (t: T).(ty3 g c0 v (THead (Bind
-Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3 g c0 w u)))) H6)))))))))))
-c y x H0))) H)))))).
+Abst) u t)) (THead (Flat Cast) t0 t2)))) (\lambda (u: T).(\lambda (t: T).(ty3
+g c0 v (THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3 g c0 w
+u)))) H6))))))))))) c y x H0))) H)))))).
theorem ty3_gen_cast:
\forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t2: T).(\forall
-(x: T).((ty3 g c (THead (Flat Cast) t2 t1) x) \to (land (pc3 c t2 x) (ty3 g c
-t1 t2)))))))
+(x: T).((ty3 g c (THead (Flat Cast) t2 t1) x) \to (ex3 T (\lambda (t0:
+T).(pc3 c (THead (Flat Cast) t0 t2) x)) (\lambda (_: T).(ty3 g c t1 t2))
+(\lambda (t0: T).(ty3 g c t2 t0))))))))
\def
\lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda
(x: T).(\lambda (H: (ty3 g c (THead (Flat Cast) t2 t1) x)).(insert_eq T
-(THead (Flat Cast) t2 t1) (\lambda (t: T).(ty3 g c t x)) (land (pc3 c t2 x)
-(ty3 g c t1 t2)) (\lambda (y: T).(\lambda (H0: (ty3 g c y x)).(ty3_ind g
-(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).((eq T t (THead (Flat Cast)
-t2 t1)) \to (land (pc3 c0 t2 t0) (ty3 g c0 t1 t2)))))) (\lambda (c0:
-C).(\lambda (t0: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 t0 t)).(\lambda
-(_: (((eq T t0 (THead (Flat Cast) t2 t1)) \to (land (pc3 c0 t2 t) (ty3 g c0
-t1 t2))))).(\lambda (u: T).(\lambda (t3: T).(\lambda (H3: (ty3 g c0 u
-t3)).(\lambda (H4: (((eq T u (THead (Flat Cast) t2 t1)) \to (land (pc3 c0 t2
-t3) (ty3 g c0 t1 t2))))).(\lambda (H5: (pc3 c0 t3 t0)).(\lambda (H6: (eq T u
-(THead (Flat Cast) t2 t1))).(let H7 \def (f_equal T T (\lambda (e: T).e) u
-(THead (Flat Cast) t2 t1) H6) in (let H8 \def (eq_ind T u (\lambda (t4:
-T).((eq T t4 (THead (Flat Cast) t2 t1)) \to (land (pc3 c0 t2 t3) (ty3 g c0 t1
-t2)))) H4 (THead (Flat Cast) t2 t1) H7) in (let H9 \def (eq_ind T u (\lambda
-(t4: T).(ty3 g c0 t4 t3)) H3 (THead (Flat Cast) t2 t1) H7) in (let H10 \def
-(H8 (refl_equal T (THead (Flat Cast) t2 t1))) in (and_ind (pc3 c0 t2 t3) (ty3
-g c0 t1 t2) (land (pc3 c0 t2 t0) (ty3 g c0 t1 t2)) (\lambda (H11: (pc3 c0 t2
-t3)).(\lambda (H12: (ty3 g c0 t1 t2)).(conj (pc3 c0 t2 t0) (ty3 g c0 t1 t2)
-(pc3_t t3 c0 t2 H11 t0 H5) H12))) H10)))))))))))))))) (\lambda (c0:
-C).(\lambda (m: nat).(\lambda (H1: (eq T (TSort m) (THead (Flat Cast) t2
-t1))).(let H2 \def (eq_ind T (TSort m) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow False])) I (THead (Flat Cast)
-t2 t1) H1) in (False_ind (land (pc3 c0 t2 (TSort (next g m))) (ty3 g c0 t1
-t2)) H2))))) (\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u:
-T).(\lambda (_: (getl n c0 (CHead d (Bind Abbr) u))).(\lambda (t: T).(\lambda
-(_: (ty3 g d u t)).(\lambda (_: (((eq T u (THead (Flat Cast) t2 t1)) \to
-(land (pc3 d t2 t) (ty3 g d t1 t2))))).(\lambda (H4: (eq T (TLRef n) (THead
+(THead (Flat Cast) t2 t1) (\lambda (t: T).(ty3 g c t x)) (ex3 T (\lambda (t0:
+T).(pc3 c (THead (Flat Cast) t0 t2) x)) (\lambda (_: T).(ty3 g c t1 t2))
+(\lambda (t0: T).(ty3 g c t2 t0))) (\lambda (y: T).(\lambda (H0: (ty3 g c y
+x)).(ty3_ind g (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).((eq T t
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t3: T).(pc3 c0 (THead (Flat
+Cast) t3 t2) t0)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t3: T).(ty3 g
+c0 t2 t3))))))) (\lambda (c0: C).(\lambda (t0: T).(\lambda (t: T).(\lambda
+(_: (ty3 g c0 t0 t)).(\lambda (_: (((eq T t0 (THead (Flat Cast) t2 t1)) \to
+(ex3 T (\lambda (t3: T).(pc3 c0 (THead (Flat Cast) t3 t2) t)) (\lambda (_:
+T).(ty3 g c0 t1 t2)) (\lambda (t3: T).(ty3 g c0 t2 t3)))))).(\lambda (u:
+T).(\lambda (t3: T).(\lambda (H3: (ty3 g c0 u t3)).(\lambda (H4: (((eq T u
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t4: T).(pc3 c0 (THead (Flat
+Cast) t4 t2) t3)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t4: T).(ty3 g
+c0 t2 t4)))))).(\lambda (H5: (pc3 c0 t3 t0)).(\lambda (H6: (eq T u (THead
+(Flat Cast) t2 t1))).(let H7 \def (f_equal T T (\lambda (e: T).e) u (THead
+(Flat Cast) t2 t1) H6) in (let H8 \def (eq_ind T u (\lambda (t4: T).((eq T t4
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t5: T).(pc3 c0 (THead (Flat
+Cast) t5 t2) t3)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g
+c0 t2 t5))))) H4 (THead (Flat Cast) t2 t1) H7) in (let H9 \def (eq_ind T u
+(\lambda (t4: T).(ty3 g c0 t4 t3)) H3 (THead (Flat Cast) t2 t1) H7) in (let
+H10 \def (H8 (refl_equal T (THead (Flat Cast) t2 t1))) in (ex3_ind T (\lambda
+(t4: T).(pc3 c0 (THead (Flat Cast) t4 t2) t3)) (\lambda (_: T).(ty3 g c0 t1
+t2)) (\lambda (t4: T).(ty3 g c0 t2 t4)) (ex3 T (\lambda (t4: T).(pc3 c0
+(THead (Flat Cast) t4 t2) t0)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda
+(t4: T).(ty3 g c0 t2 t4))) (\lambda (x0: T).(\lambda (H11: (pc3 c0 (THead
+(Flat Cast) x0 t2) t3)).(\lambda (H12: (ty3 g c0 t1 t2)).(\lambda (H13: (ty3
+g c0 t2 x0)).(ex3_intro T (\lambda (t4: T).(pc3 c0 (THead (Flat Cast) t4 t2)
+t0)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t4: T).(ty3 g c0 t2 t4)) x0
+(pc3_t t3 c0 (THead (Flat Cast) x0 t2) H11 t0 H5) H12 H13)))))
+H10)))))))))))))))) (\lambda (c0: C).(\lambda (m: nat).(\lambda (H1: (eq T
+(TSort m) (THead (Flat Cast) t2 t1))).(let H2 \def (eq_ind T (TSort m)
+(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow True | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+False])) I (THead (Flat Cast) t2 t1) H1) in (False_ind (ex3 T (\lambda (t0:
+T).(pc3 c0 (THead (Flat Cast) t0 t2) (TSort (next g m)))) (\lambda (_:
+T).(ty3 g c0 t1 t2)) (\lambda (t0: T).(ty3 g c0 t2 t0))) H2))))) (\lambda (n:
+nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda (_: (getl n c0
+(CHead d (Bind Abbr) u))).(\lambda (t: T).(\lambda (_: (ty3 g d u
+t)).(\lambda (_: (((eq T u (THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda
+(t0: T).(pc3 d (THead (Flat Cast) t0 t2) t)) (\lambda (_: T).(ty3 g d t1 t2))
+(\lambda (t0: T).(ty3 g d t2 t0)))))).(\lambda (H4: (eq T (TLRef n) (THead
(Flat Cast) t2 t1))).(let H5 \def (eq_ind T (TLRef n) (\lambda (ee: T).(match
ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
(TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead
-(Flat Cast) t2 t1) H4) in (False_ind (land (pc3 c0 t2 (lift (S n) O t)) (ty3
-g c0 t1 t2)) H5))))))))))) (\lambda (n: nat).(\lambda (c0: C).(\lambda (d:
-C).(\lambda (u: T).(\lambda (_: (getl n c0 (CHead d (Bind Abst) u))).(\lambda
-(t: T).(\lambda (_: (ty3 g d u t)).(\lambda (_: (((eq T u (THead (Flat Cast)
-t2 t1)) \to (land (pc3 d t2 t) (ty3 g d t1 t2))))).(\lambda (H4: (eq T (TLRef
-n) (THead (Flat Cast) t2 t1))).(let H5 \def (eq_ind T (TLRef n) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I
-(THead (Flat Cast) t2 t1) H4) in (False_ind (land (pc3 c0 t2 (lift (S n) O
-u)) (ty3 g c0 t1 t2)) H5))))))))))) (\lambda (c0: C).(\lambda (u: T).(\lambda
+(Flat Cast) t2 t1) H4) in (False_ind (ex3 T (\lambda (t0: T).(pc3 c0 (THead
+(Flat Cast) t0 t2) (lift (S n) O t))) (\lambda (_: T).(ty3 g c0 t1 t2))
+(\lambda (t0: T).(ty3 g c0 t2 t0))) H5))))))))))) (\lambda (n: nat).(\lambda
+(c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda (_: (getl n c0 (CHead d
+(Bind Abst) u))).(\lambda (t: T).(\lambda (_: (ty3 g d u t)).(\lambda (_:
+(((eq T u (THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t0: T).(pc3 d
+(THead (Flat Cast) t0 t2) t)) (\lambda (_: T).(ty3 g d t1 t2)) (\lambda (t0:
+T).(ty3 g d t2 t0)))))).(\lambda (H4: (eq T (TLRef n) (THead (Flat Cast) t2
+t1))).(let H5 \def (eq_ind T (TLRef n) (\lambda (ee: T).(match ee in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead (Flat Cast) t2
+t1) H4) in (False_ind (ex3 T (\lambda (t0: T).(pc3 c0 (THead (Flat Cast) t0
+t2) (lift (S n) O u))) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t0:
+T).(ty3 g c0 t2 t0))) H5))))))))))) (\lambda (c0: C).(\lambda (u: T).(\lambda
(t: T).(\lambda (_: (ty3 g c0 u t)).(\lambda (_: (((eq T u (THead (Flat Cast)
-t2 t1)) \to (land (pc3 c0 t2 t) (ty3 g c0 t1 t2))))).(\lambda (b: B).(\lambda
-(t0: T).(\lambda (t3: T).(\lambda (_: (ty3 g (CHead c0 (Bind b) u) t0
-t3)).(\lambda (_: (((eq T t0 (THead (Flat Cast) t2 t1)) \to (land (pc3 (CHead
-c0 (Bind b) u) t2 t3) (ty3 g (CHead c0 (Bind b) u) t1 t2))))).(\lambda (t4:
+t2 t1)) \to (ex3 T (\lambda (t0: T).(pc3 c0 (THead (Flat Cast) t0 t2) t))
+(\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t0: T).(ty3 g c0 t2
+t0)))))).(\lambda (b: B).(\lambda (t0: T).(\lambda (t3: T).(\lambda (_: (ty3
+g (CHead c0 (Bind b) u) t0 t3)).(\lambda (_: (((eq T t0 (THead (Flat Cast) t2
+t1)) \to (ex3 T (\lambda (t4: T).(pc3 (CHead c0 (Bind b) u) (THead (Flat
+Cast) t4 t2) t3)) (\lambda (_: T).(ty3 g (CHead c0 (Bind b) u) t1 t2))
+(\lambda (t4: T).(ty3 g (CHead c0 (Bind b) u) t2 t4)))))).(\lambda (t4:
T).(\lambda (_: (ty3 g (CHead c0 (Bind b) u) t3 t4)).(\lambda (_: (((eq T t3
-(THead (Flat Cast) t2 t1)) \to (land (pc3 (CHead c0 (Bind b) u) t2 t4) (ty3 g
-(CHead c0 (Bind b) u) t1 t2))))).(\lambda (H7: (eq T (THead (Bind b) u t0)
-(THead (Flat Cast) t2 t1))).(let H8 \def (eq_ind T (THead (Bind b) u t0)
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True |
-(Flat _) \Rightarrow False])])) I (THead (Flat Cast) t2 t1) H7) in (False_ind
-(land (pc3 c0 t2 (THead (Bind b) u t3)) (ty3 g c0 t1 t2)) H8))))))))))))))))
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t5: T).(pc3 (CHead c0 (Bind
+b) u) (THead (Flat Cast) t5 t2) t4)) (\lambda (_: T).(ty3 g (CHead c0 (Bind
+b) u) t1 t2)) (\lambda (t5: T).(ty3 g (CHead c0 (Bind b) u) t2
+t5)))))).(\lambda (H7: (eq T (THead (Bind b) u t0) (THead (Flat Cast) t2
+t1))).(let H8 \def (eq_ind T (THead (Bind b) u t0) (\lambda (ee: T).(match ee
+in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
+(\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+False])])) I (THead (Flat Cast) t2 t1) H7) in (False_ind (ex3 T (\lambda (t5:
+T).(pc3 c0 (THead (Flat Cast) t5 t2) (THead (Bind b) u t3))) (\lambda (_:
+T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5))) H8))))))))))))))))
(\lambda (c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w
-u)).(\lambda (_: (((eq T w (THead (Flat Cast) t2 t1)) \to (land (pc3 c0 t2 u)
-(ty3 g c0 t1 t2))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v
-(THead (Bind Abst) u t))).(\lambda (_: (((eq T v (THead (Flat Cast) t2 t1))
-\to (land (pc3 c0 t2 (THead (Bind Abst) u t)) (ty3 g c0 t1 t2))))).(\lambda
-(H5: (eq T (THead (Flat Appl) w v) (THead (Flat Cast) t2 t1))).(let H6 \def
-(eq_ind T (THead (Flat Appl) w v) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
-in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast
-\Rightarrow False])])])) I (THead (Flat Cast) t2 t1) H5) in (False_ind (land
-(pc3 c0 t2 (THead (Flat Appl) w (THead (Bind Abst) u t))) (ty3 g c0 t1 t2))
-H6)))))))))))) (\lambda (c0: C).(\lambda (t0: T).(\lambda (t3: T).(\lambda
-(H1: (ty3 g c0 t0 t3)).(\lambda (H2: (((eq T t0 (THead (Flat Cast) t2 t1))
-\to (land (pc3 c0 t2 t3) (ty3 g c0 t1 t2))))).(\lambda (t4: T).(\lambda (H3:
+u)).(\lambda (_: (((eq T w (THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda
+(t0: T).(pc3 c0 (THead (Flat Cast) t0 t2) u)) (\lambda (_: T).(ty3 g c0 t1
+t2)) (\lambda (t0: T).(ty3 g c0 t2 t0)))))).(\lambda (v: T).(\lambda (t:
+T).(\lambda (_: (ty3 g c0 v (THead (Bind Abst) u t))).(\lambda (_: (((eq T v
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t0: T).(pc3 c0 (THead (Flat
+Cast) t0 t2) (THead (Bind Abst) u t))) (\lambda (_: T).(ty3 g c0 t1 t2))
+(\lambda (t0: T).(ty3 g c0 t2 t0)))))).(\lambda (H5: (eq T (THead (Flat Appl)
+w v) (THead (Flat Cast) t2 t1))).(let H6 \def (eq_ind T (THead (Flat Appl) w
+v) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_:
+F).Prop) with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead
+(Flat Cast) t2 t1) H5) in (False_ind (ex3 T (\lambda (t0: T).(pc3 c0 (THead
+(Flat Cast) t0 t2) (THead (Flat Appl) w (THead (Bind Abst) u t)))) (\lambda
+(_: T).(ty3 g c0 t1 t2)) (\lambda (t0: T).(ty3 g c0 t2 t0))) H6))))))))))))
+(\lambda (c0: C).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H1: (ty3 g c0 t0
+t3)).(\lambda (H2: (((eq T t0 (THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda
+(t4: T).(pc3 c0 (THead (Flat Cast) t4 t2) t3)) (\lambda (_: T).(ty3 g c0 t1
+t2)) (\lambda (t4: T).(ty3 g c0 t2 t4)))))).(\lambda (t4: T).(\lambda (H3:
(ty3 g c0 t3 t4)).(\lambda (H4: (((eq T t3 (THead (Flat Cast) t2 t1)) \to
-(land (pc3 c0 t2 t4) (ty3 g c0 t1 t2))))).(\lambda (H5: (eq T (THead (Flat
-Cast) t3 t0) (THead (Flat Cast) t2 t1))).(let H6 \def (f_equal T T (\lambda
-(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3
-| (TLRef _) \Rightarrow t3 | (THead _ t _) \Rightarrow t])) (THead (Flat
-Cast) t3 t0) (THead (Flat Cast) t2 t1) H5) in ((let H7 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
-(THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1) H5) in (\lambda (H8: (eq
-T t3 t2)).(let H9 \def (eq_ind T t3 (\lambda (t: T).((eq T t (THead (Flat
-Cast) t2 t1)) \to (land (pc3 c0 t2 t4) (ty3 g c0 t1 t2)))) H4 t2 H8) in (let
-H10 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t t4)) H3 t2 H8) in (let H11
-\def (eq_ind T t3 (\lambda (t: T).((eq T t0 (THead (Flat Cast) t2 t1)) \to
-(land (pc3 c0 t2 t) (ty3 g c0 t1 t2)))) H2 t2 H8) in (let H12 \def (eq_ind T
-t3 (\lambda (t: T).(ty3 g c0 t0 t)) H1 t2 H8) in (eq_ind_r T t2 (\lambda (t:
-T).(land (pc3 c0 t2 t) (ty3 g c0 t1 t2))) (let H13 \def (eq_ind T t0 (\lambda
-(t: T).((eq T t (THead (Flat Cast) t2 t1)) \to (land (pc3 c0 t2 t2) (ty3 g c0
-t1 t2)))) H11 t1 H7) in (let H14 \def (eq_ind T t0 (\lambda (t: T).(ty3 g c0
-t t2)) H12 t1 H7) in (conj (pc3 c0 t2 t2) (ty3 g c0 t1 t2) (pc3_refl c0 t2)
-H14))) t3 H8))))))) H6))))))))))) c y x H0))) H)))))).
+(ex3 T (\lambda (t5: T).(pc3 c0 (THead (Flat Cast) t5 t2) t4)) (\lambda (_:
+T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5)))))).(\lambda (H5: (eq
+T (THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1))).(let H6 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ t _) \Rightarrow t]))
+(THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1) H5) in ((let H7 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead (Flat Cast) t3 t0) (THead (Flat Cast) t2 t1) H5) in
+(\lambda (H8: (eq T t3 t2)).(let H9 \def (eq_ind T t3 (\lambda (t: T).((eq T
+t (THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t5: T).(pc3 c0 (THead (Flat
+Cast) t5 t2) t4)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g
+c0 t2 t5))))) H4 t2 H8) in (let H10 \def (eq_ind T t3 (\lambda (t: T).(ty3 g
+c0 t t4)) H3 t2 H8) in (let H11 \def (eq_ind T t3 (\lambda (t: T).((eq T t0
+(THead (Flat Cast) t2 t1)) \to (ex3 T (\lambda (t5: T).(pc3 c0 (THead (Flat
+Cast) t5 t2) t)) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0
+t2 t5))))) H2 t2 H8) in (let H12 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0
+t0 t)) H1 t2 H8) in (eq_ind_r T t2 (\lambda (t: T).(ex3 T (\lambda (t5:
+T).(pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4 t))) (\lambda (_:
+T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5)))) (let H13 \def
+(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Cast) t2 t1)) \to (ex3 T
+(\lambda (t5: T).(pc3 c0 (THead (Flat Cast) t5 t2) t2)) (\lambda (_: T).(ty3
+g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5))))) H11 t1 H7) in (let H14
+\def (eq_ind T t0 (\lambda (t: T).(ty3 g c0 t t2)) H12 t1 H7) in (ex3_intro T
+(\lambda (t5: T).(pc3 c0 (THead (Flat Cast) t5 t2) (THead (Flat Cast) t4
+t2))) (\lambda (_: T).(ty3 g c0 t1 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5)) t4
+(pc3_refl c0 (THead (Flat Cast) t4 t2)) H14 H10))) t3 H8))))))) H6)))))))))))
+c y x H0))) H)))))).
c2)).(\lambda (t4: T).(\lambda (H5: (pr0 (THead (Flat Cast) t3 t2) t4)).(let
H6 \def (match H5 in pr0 return (\lambda (t5: T).(\lambda (t6: T).(\lambda
(_: (pr0 t5 t6)).((eq T t5 (THead (Flat Cast) t3 t2)) \to ((eq T t6 t4) \to
-(ty3 g c2 t4 t3)))))) with [(pr0_refl t5) \Rightarrow (\lambda (H6: (eq T t5
-(THead (Flat Cast) t3 t2))).(\lambda (H7: (eq T t5 t4)).(eq_ind T (THead
-(Flat Cast) t3 t2) (\lambda (t6: T).((eq T t6 t4) \to (ty3 g c2 t4 t3)))
-(\lambda (H8: (eq T (THead (Flat Cast) t3 t2) t4)).(eq_ind T (THead (Flat
-Cast) t3 t2) (\lambda (t6: T).(ty3 g c2 t6 t3)) (ty3_cast g c2 t2 t3 (H1 c2
-H4 t2 (pr0_refl t2)) t0 (H3 c2 H4 t3 (pr0_refl t3))) t4 H8)) t5 (sym_eq T t5
-(THead (Flat Cast) t3 t2) H6) H7))) | (pr0_comp u1 u2 H6 t5 t6 H7 k)
-\Rightarrow (\lambda (H8: (eq T (THead k u1 t5) (THead (Flat Cast) t3
-t2))).(\lambda (H9: (eq T (THead k u2 t6) t4)).((let H10 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t5 | (TLRef _) \Rightarrow t5 | (THead _ _ t7) \Rightarrow t7]))
-(THead k u1 t5) (THead (Flat Cast) t3 t2) H8) in ((let H11 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
-(THead k u1 t5) (THead (Flat Cast) t3 t2) H8) in ((let H12 \def (f_equal T K
-(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
-\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
-(THead k u1 t5) (THead (Flat Cast) t3 t2) H8) in (eq_ind K (Flat Cast)
-(\lambda (k0: K).((eq T u1 t3) \to ((eq T t5 t2) \to ((eq T (THead k0 u2 t6)
-t4) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ty3 g c2 t4 t3))))))) (\lambda
-(H13: (eq T u1 t3)).(eq_ind T t3 (\lambda (t7: T).((eq T t5 t2) \to ((eq T
-(THead (Flat Cast) u2 t6) t4) \to ((pr0 t7 u2) \to ((pr0 t5 t6) \to (ty3 g c2
-t4 t3)))))) (\lambda (H14: (eq T t5 t2)).(eq_ind T t2 (\lambda (t7: T).((eq T
-(THead (Flat Cast) u2 t6) t4) \to ((pr0 t3 u2) \to ((pr0 t7 t6) \to (ty3 g c2
-t4 t3))))) (\lambda (H15: (eq T (THead (Flat Cast) u2 t6) t4)).(eq_ind T
-(THead (Flat Cast) u2 t6) (\lambda (t7: T).((pr0 t3 u2) \to ((pr0 t2 t6) \to
-(ty3 g c2 t7 t3)))) (\lambda (H16: (pr0 t3 u2)).(\lambda (H17: (pr0 t2
-t6)).(ty3_conv g c2 t3 t0 (H3 c2 H4 t3 (pr0_refl t3)) (THead (Flat Cast) u2
-t6) u2 (ty3_cast g c2 t6 u2 (ty3_conv g c2 u2 t0 (H3 c2 H4 u2 H16) t6 t3 (H1
-c2 H4 t6 H17) (pc3_pr2_r c2 t3 u2 (pr2_free c2 t3 u2 H16))) t0 (H3 c2 H4 u2
-H16)) (pc3_pr2_x c2 u2 t3 (pr2_free c2 t3 u2 H16))))) t4 H15)) t5 (sym_eq T
-t5 t2 H14))) u1 (sym_eq T u1 t3 H13))) k (sym_eq K k (Flat Cast) H12))) H11))
-H10)) H9 H6 H7))) | (pr0_beta u v1 v2 H6 t5 t6 H7) \Rightarrow (\lambda (H8:
-(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) (THead (Flat Cast) t3
-t2))).(\lambda (H9: (eq T (THead (Bind Abbr) v2 t6) t4)).((let H10 \def
-(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (e:
-T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
-\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow
-True | Cast \Rightarrow False])])])) I (THead (Flat Cast) t3 t2) H8) in
-(False_ind ((eq T (THead (Bind Abbr) v2 t6) t4) \to ((pr0 v1 v2) \to ((pr0 t5
-t6) \to (ty3 g c2 t4 t3)))) H10)) H9 H6 H7))) | (pr0_upsilon b H6 v1 v2 H7 u1
-u2 H8 t5 t6 H9) \Rightarrow (\lambda (H10: (eq T (THead (Flat Appl) v1 (THead
-(Bind b) u1 t5)) (THead (Flat Cast) t3 t2))).(\lambda (H11: (eq T (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t4)).((let H12 \def
-(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) (\lambda (e:
+(ty3 g c2 t4 (THead (Flat Cast) t0 t3))))))) with [(pr0_refl t5) \Rightarrow
+(\lambda (H6: (eq T t5 (THead (Flat Cast) t3 t2))).(\lambda (H7: (eq T t5
+t4)).(eq_ind T (THead (Flat Cast) t3 t2) (\lambda (t6: T).((eq T t6 t4) \to
+(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))) (\lambda (H8: (eq T (THead (Flat
+Cast) t3 t2) t4)).(eq_ind T (THead (Flat Cast) t3 t2) (\lambda (t6: T).(ty3 g
+c2 t6 (THead (Flat Cast) t0 t3))) (ty3_cast g c2 t2 t3 (H1 c2 H4 t2 (pr0_refl
+t2)) t0 (H3 c2 H4 t3 (pr0_refl t3))) t4 H8)) t5 (sym_eq T t5 (THead (Flat
+Cast) t3 t2) H6) H7))) | (pr0_comp u1 u2 H6 t5 t6 H7 k) \Rightarrow (\lambda
+(H8: (eq T (THead k u1 t5) (THead (Flat Cast) t3 t2))).(\lambda (H9: (eq T
+(THead k u2 t6) t4)).((let H10 \def (f_equal T T (\lambda (e: T).(match e in
+T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t5 | (TLRef _)
+\Rightarrow t5 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t5) (THead
+(Flat Cast) t3 t2) H8) in ((let H11 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t5) (THead
+(Flat Cast) t3 t2) H8) in ((let H12 \def (f_equal T K (\lambda (e: T).(match
+e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t5) (THead (Flat
+Cast) t3 t2) H8) in (eq_ind K (Flat Cast) (\lambda (k0: K).((eq T u1 t3) \to
+((eq T t5 t2) \to ((eq T (THead k0 u2 t6) t4) \to ((pr0 u1 u2) \to ((pr0 t5
+t6) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3)))))))) (\lambda (H13: (eq T u1
+t3)).(eq_ind T t3 (\lambda (t7: T).((eq T t5 t2) \to ((eq T (THead (Flat
+Cast) u2 t6) t4) \to ((pr0 t7 u2) \to ((pr0 t5 t6) \to (ty3 g c2 t4 (THead
+(Flat Cast) t0 t3))))))) (\lambda (H14: (eq T t5 t2)).(eq_ind T t2 (\lambda
+(t7: T).((eq T (THead (Flat Cast) u2 t6) t4) \to ((pr0 t3 u2) \to ((pr0 t7
+t6) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3)))))) (\lambda (H15: (eq T
+(THead (Flat Cast) u2 t6) t4)).(eq_ind T (THead (Flat Cast) u2 t6) (\lambda
+(t7: T).((pr0 t3 u2) \to ((pr0 t2 t6) \to (ty3 g c2 t7 (THead (Flat Cast) t0
+t3))))) (\lambda (H16: (pr0 t3 u2)).(\lambda (H17: (pr0 t2 t6)).(ex_ind T
+(\lambda (t7: T).(ty3 g c2 t0 t7)) (ty3 g c2 (THead (Flat Cast) u2 t6) (THead
+(Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H18: (ty3 g c2 t0 x)).(ty3_conv
+g c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0) (ty3_cast g c2 t3 t0
+(H3 c2 H4 t3 (pr0_refl t3)) x H18) (THead (Flat Cast) u2 t6) (THead (Flat
+Cast) t0 u2) (ty3_cast g c2 t6 u2 (ty3_conv g c2 u2 t0 (H3 c2 H4 u2 H16) t6
+t3 (H1 c2 H4 t6 H17) (pc3_pr2_r c2 t3 u2 (pr2_free c2 t3 u2 H16))) t0 (H3 c2
+H4 u2 H16)) (pc3_pr2_x c2 (THead (Flat Cast) t0 u2) (THead (Flat Cast) t0 t3)
+(pr2_thin_dx c2 t3 u2 (pr2_free c2 t3 u2 H16) t0 Cast))))) (ty3_correct g c2
+t3 t0 (H3 c2 H4 t3 (pr0_refl t3)))))) t4 H15)) t5 (sym_eq T t5 t2 H14))) u1
+(sym_eq T u1 t3 H13))) k (sym_eq K k (Flat Cast) H12))) H11)) H10)) H9 H6
+H7))) | (pr0_beta u v1 v2 H6 t5 t6 H7) \Rightarrow (\lambda (H8: (eq T (THead
+(Flat Appl) v1 (THead (Bind Abst) u t5)) (THead (Flat Cast) t3 t2))).(\lambda
+(H9: (eq T (THead (Bind Abbr) v2 t6) t4)).((let H10 \def (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
+in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast
+\Rightarrow False])])])) I (THead (Flat Cast) t3 t2) H8) in (False_ind ((eq T
+(THead (Bind Abbr) v2 t6) t4) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to (ty3 g c2
+t4 (THead (Flat Cast) t0 t3))))) H10)) H9 H6 H7))) | (pr0_upsilon b H6 v1 v2
+H7 u1 u2 H8 t5 t6 H9) \Rightarrow (\lambda (H10: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u1 t5)) (THead (Flat Cast) t3 t2))).(\lambda (H11: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t4)).((let H12
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) (\lambda (e:
T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
True | Cast \Rightarrow False])])])) I (THead (Flat Cast) t3 t2) H10) in
(False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
t6)) t4) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0
-t5 t6) \to (ty3 g c2 t4 t3)))))) H12)) H11 H6 H7 H8 H9))) | (pr0_delta u1 u2
-H6 t5 t6 H7 w H8) \Rightarrow (\lambda (H9: (eq T (THead (Bind Abbr) u1 t5)
-(THead (Flat Cast) t3 t2))).(\lambda (H10: (eq T (THead (Bind Abbr) u2 w)
-t4)).((let H11 \def (eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (e:
-T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _)
-\Rightarrow False])])) I (THead (Flat Cast) t3 t2) H9) in (False_ind ((eq T
-(THead (Bind Abbr) u2 w) t4) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O
-u2 t6 w) \to (ty3 g c2 t4 t3))))) H11)) H10 H6 H7 H8))) | (pr0_zeta b H6 t5
-t6 H7 u) \Rightarrow (\lambda (H8: (eq T (THead (Bind b) u (lift (S O) O t5))
-(THead (Flat Cast) t3 t2))).(\lambda (H9: (eq T t6 t4)).((let H10 \def
-(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (e: T).(match e in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
-False])])) I (THead (Flat Cast) t3 t2) H8) in (False_ind ((eq T t6 t4) \to
-((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ty3 g c2 t4 t3)))) H10)) H9 H6
-H7))) | (pr0_epsilon t5 t6 H6 u) \Rightarrow (\lambda (H7: (eq T (THead (Flat
-Cast) u t5) (THead (Flat Cast) t3 t2))).(\lambda (H8: (eq T t6 t4)).((let H9
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow t5 | (TLRef _) \Rightarrow t5 | (THead _ _ t7)
+t5 t6) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3))))))) H12)) H11 H6 H7 H8
+H9))) | (pr0_delta u1 u2 H6 t5 t6 H7 w H8) \Rightarrow (\lambda (H9: (eq T
+(THead (Bind Abbr) u1 t5) (THead (Flat Cast) t3 t2))).(\lambda (H10: (eq T
+(THead (Bind Abbr) u2 w) t4)).((let H11 \def (eq_ind T (THead (Bind Abbr) u1
+t5) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Cast) t3
+t2) H9) in (False_ind ((eq T (THead (Bind Abbr) u2 w) t4) \to ((pr0 u1 u2)
+\to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ty3 g c2 t4 (THead (Flat Cast)
+t0 t3)))))) H11)) H10 H6 H7 H8))) | (pr0_zeta b H6 t5 t6 H7 u) \Rightarrow
+(\lambda (H8: (eq T (THead (Bind b) u (lift (S O) O t5)) (THead (Flat Cast)
+t3 t2))).(\lambda (H9: (eq T t6 t4)).((let H10 \def (eq_ind T (THead (Bind b)
+u (lift (S O) O t5)) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat
+Cast) t3 t2) H8) in (False_ind ((eq T t6 t4) \to ((not (eq B b Abst)) \to
+((pr0 t5 t6) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3))))) H10)) H9 H6 H7)))
+| (pr0_epsilon t5 t6 H6 u) \Rightarrow (\lambda (H7: (eq T (THead (Flat Cast)
+u t5) (THead (Flat Cast) t3 t2))).(\lambda (H8: (eq T t6 t4)).((let H9 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t5 | (TLRef _) \Rightarrow t5 | (THead _ _ t7)
\Rightarrow t7])) (THead (Flat Cast) u t5) (THead (Flat Cast) t3 t2) H7) in
((let H10 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7
_) \Rightarrow t7])) (THead (Flat Cast) u t5) (THead (Flat Cast) t3 t2) H7)
in (eq_ind T t3 (\lambda (_: T).((eq T t5 t2) \to ((eq T t6 t4) \to ((pr0 t5
-t6) \to (ty3 g c2 t4 t3))))) (\lambda (H11: (eq T t5 t2)).(eq_ind T t2
-(\lambda (t7: T).((eq T t6 t4) \to ((pr0 t7 t6) \to (ty3 g c2 t4 t3))))
-(\lambda (H12: (eq T t6 t4)).(eq_ind T t4 (\lambda (t7: T).((pr0 t2 t7) \to
-(ty3 g c2 t4 t3))) (\lambda (H13: (pr0 t2 t4)).(H1 c2 H4 t4 H13)) t6 (sym_eq
-T t6 t4 H12))) t5 (sym_eq T t5 t2 H11))) u (sym_eq T u t3 H10))) H9)) H8
-H6)))]) in (H6 (refl_equal T (THead (Flat Cast) t3 t2)) (refl_equal T
-t4))))))))))))))) c1 t1 t H))))).
+t6) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3)))))) (\lambda (H11: (eq T t5
+t2)).(eq_ind T t2 (\lambda (t7: T).((eq T t6 t4) \to ((pr0 t7 t6) \to (ty3 g
+c2 t4 (THead (Flat Cast) t0 t3))))) (\lambda (H12: (eq T t6 t4)).(eq_ind T t4
+(\lambda (t7: T).((pr0 t2 t7) \to (ty3 g c2 t4 (THead (Flat Cast) t0 t3))))
+(\lambda (H13: (pr0 t2 t4)).(ex_ind T (\lambda (t7: T).(ty3 g c2 t0 t7)) (ty3
+g c2 t4 (THead (Flat Cast) t0 t3)) (\lambda (x: T).(\lambda (H14: (ty3 g c2
+t0 x)).(ty3_conv g c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0)
+(ty3_cast g c2 t3 t0 (H3 c2 H4 t3 (pr0_refl t3)) x H14) t4 t3 (H1 c2 H4 t4
+H13) (pc3_pr2_x c2 t3 (THead (Flat Cast) t0 t3) (pr2_free c2 (THead (Flat
+Cast) t0 t3) t3 (pr0_epsilon t3 t3 (pr0_refl t3) t0)))))) (ty3_correct g c2
+t3 t0 (H3 c2 H4 t3 (pr0_refl t3))))) t6 (sym_eq T t6 t4 H12))) t5 (sym_eq T
+t5 t2 H11))) u (sym_eq T u t3 H10))) H9)) H8 H6)))]) in (H6 (refl_equal T
+(THead (Flat Cast) t3 t2)) (refl_equal T t4))))))))))))))) c1 t1 t H))))).
theorem ty3_sred_pr1:
\forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr1 t1 t2) \to (\forall
(drop h x1 c0 e)).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0
(THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T t3 (lift h
x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T
-(\lambda (t4: T).(pc3 c0 (lift h x1 t4) t3)) (\lambda (t4: T).(ty3 g e x0
-t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H7: (eq T x0 (THead (Flat
-Cast) x2 x3))).(\lambda (H8: (eq T t3 (lift h x1 x2))).(\lambda (H9: (eq T t2
-(lift h x1 x3))).(eq_ind_r T (THead (Flat Cast) x2 x3) (\lambda (t: T).(ex2 T
-(\lambda (t4: T).(pc3 c0 (lift h x1 t4) t3)) (\lambda (t4: T).(ty3 g e t
-t4)))) (let H10 \def (eq_ind T t3 (\lambda (t: T).(\forall (x4: T).(\forall
-(x5: nat).((eq T t (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 c0 e0)
-\to (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x5 t4) t0)) (\lambda (t4: T).(ty3
-g e0 x4 t4))))))))) H4 (lift h x1 x2) H8) in (let H11 \def (eq_ind T t3
-(\lambda (t: T).(ty3 g c0 t t0)) H3 (lift h x1 x2) H8) in (let H12 \def
-(eq_ind T t3 (\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t2
-(lift h x5 x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda
-(t4: T).(pc3 c0 (lift h x5 t4) t)) (\lambda (t4: T).(ty3 g e0 x4 t4)))))))))
-H2 (lift h x1 x2) H8) in (let H13 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0
-t2 t)) H1 (lift h x1 x2) H8) in (eq_ind_r T (lift h x1 x2) (\lambda (t:
-T).(ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) t)) (\lambda (t4: T).(ty3 g
-e (THead (Flat Cast) x2 x3) t4)))) (let H14 \def (eq_ind T t2 (\lambda (t:
-T).(ty3 g c0 t (lift h x1 x2))) H13 (lift h x1 x3) H9) in (let H15 \def
-(eq_ind T t2 (\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t
-(lift h x5 x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda
-(t4: T).(pc3 c0 (lift h x5 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e0 x4
-t4))))))))) H12 (lift h x1 x3) H9) in (let H16 \def (H15 x3 x1 (refl_equal T
-(lift h x1 x3)) e H6) in (ex2_ind T (\lambda (t4: T).(pc3 c0 (lift h x1 t4)
-(lift h x1 x2))) (\lambda (t4: T).(ty3 g e x3 t4)) (ex2 T (\lambda (t4:
-T).(pc3 c0 (lift h x1 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e (THead
+(\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 t3))) (\lambda
+(t4: T).(ty3 g e x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H7: (eq
+T x0 (THead (Flat Cast) x2 x3))).(\lambda (H8: (eq T t3 (lift h x1
+x2))).(\lambda (H9: (eq T t2 (lift h x1 x3))).(eq_ind_r T (THead (Flat Cast)
+x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead
+(Flat Cast) t0 t3))) (\lambda (t4: T).(ty3 g e t t4)))) (let H10 \def (eq_ind
+T t3 (\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t (lift h x5
+x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3
+c0 (lift h x5 t4) t0)) (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H4 (lift h
+x1 x2) H8) in (let H11 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t t0)) H3
+(lift h x1 x2) H8) in (let H12 \def (eq_ind T t3 (\lambda (t: T).(\forall
+(x4: T).(\forall (x5: nat).((eq T t2 (lift h x5 x4)) \to (\forall (e0:
+C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x5 t4) t))
+(\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H2 (lift h x1 x2) H8) in (let H13
+\def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t2 t)) H1 (lift h x1 x2) H8) in
+(eq_ind_r T (lift h x1 x2) (\lambda (t: T).(ex2 T (\lambda (t4: T).(pc3 c0
+(lift h x1 t4) (THead (Flat Cast) t0 t))) (\lambda (t4: T).(ty3 g e (THead
+(Flat Cast) x2 x3) t4)))) (let H14 \def (eq_ind T t2 (\lambda (t: T).(ty3 g
+c0 t (lift h x1 x2))) H13 (lift h x1 x3) H9) in (let H15 \def (eq_ind T t2
+(\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t (lift h x5 x4))
+\to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3 c0
+(lift h x5 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H12
+(lift h x1 x3) H9) in (let H16 \def (H15 x3 x1 (refl_equal T (lift h x1 x3))
+e H6) in (ex2_ind T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (lift h x1 x2)))
+(\lambda (t4: T).(ty3 g e x3 t4)) (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1
+t4) (THead (Flat Cast) t0 (lift h x1 x2)))) (\lambda (t4: T).(ty3 g e (THead
(Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H17: (pc3 c0 (lift h x1
x4) (lift h x1 x2))).(\lambda (H18: (ty3 g e x3 x4)).(let H19 \def (H10 x2 x1
(refl_equal T (lift h x1 x2)) e H6) in (ex2_ind T (\lambda (t4: T).(pc3 c0
(lift h x1 t4) t0)) (\lambda (t4: T).(ty3 g e x2 t4)) (ex2 T (\lambda (t4:
-T).(pc3 c0 (lift h x1 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e (THead
-(Flat Cast) x2 x3) t4))) (\lambda (x5: T).(\lambda (_: (pc3 c0 (lift h x1 x5)
-t0)).(\lambda (H21: (ty3 g e x2 x5)).(ex_intro2 T (\lambda (t4: T).(pc3 c0
-(lift h x1 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e (THead (Flat Cast)
-x2 x3) t4)) x2 (pc3_refl c0 (lift h x1 x2)) (ty3_cast g e x3 x2 (ty3_conv g e
+T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 (lift h x1 x2)))) (\lambda
+(t4: T).(ty3 g e (THead (Flat Cast) x2 x3) t4))) (\lambda (x5: T).(\lambda
+(H20: (pc3 c0 (lift h x1 x5) t0)).(\lambda (H21: (ty3 g e x2 x5)).(ex_intro2
+T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 (lift h x1
+x2)))) (\lambda (t4: T).(ty3 g e (THead (Flat Cast) x2 x3) t4)) (THead (Flat
+Cast) x5 x2) (eq_ind_r T (THead (Flat Cast) (lift h x1 x5) (lift h x1 x2))
+(\lambda (t: T).(pc3 c0 t (THead (Flat Cast) t0 (lift h x1 x2)))) (pc3_head_1
+c0 (lift h x1 x5) t0 H20 (Flat Cast) (lift h x1 x2)) (lift h x1 (THead (Flat
+Cast) x5 x2)) (lift_flat Cast x5 x2 h x1)) (ty3_cast g e x3 x2 (ty3_conv g e
x2 x5 H21 x3 x4 H18 (pc3_gen_lift c0 x4 x2 h x1 H17 e H6)) x5 H21)))))
H19))))) H16)))) t3 H8))))) x0 H7)))))) (lift_gen_flat Cast t3 t2 x0 h x1
H5))))))))))))))) c y x H0))))) H))))))).
nat).(\forall (h: nat).((drop h d c0 c) \to (ty3 g c0 (lift h d t3) (lift h d
t4)))))))).(\lambda (c0: C).(\lambda (d: nat).(\lambda (h: nat).(\lambda (H4:
(drop h d c0 c)).(eq_ind_r T (THead (Flat Cast) (lift h d t3) (lift h (s
-(Flat Cast) d) t0)) (\lambda (t: T).(ty3 g c0 t (lift h d t3))) (ty3_cast g
-c0 (lift h (s (Flat Cast) d) t0) (lift h d t3) (H1 c0 d h H4) (lift h d t4)
-(H3 c0 d h H4)) (lift h d (THead (Flat Cast) t3 t0)) (lift_head (Flat Cast)
-t3 t0 h d)))))))))))))) e t1 t2 H))))).
+(Flat Cast) d) t0)) (\lambda (t: T).(ty3 g c0 t (lift h d (THead (Flat Cast)
+t4 t3)))) (eq_ind_r T (THead (Flat Cast) (lift h d t4) (lift h (s (Flat Cast)
+d) t3)) (\lambda (t: T).(ty3 g c0 (THead (Flat Cast) (lift h d t3) (lift h (s
+(Flat Cast) d) t0)) t)) (ty3_cast g c0 (lift h (s (Flat Cast) d) t0) (lift h
+(s (Flat Cast) d) t3) (H1 c0 (s (Flat Cast) d) h H4) (lift h d t4) (H3 c0 d h
+H4)) (lift h d (THead (Flat Cast) t4 t3)) (lift_head (Flat Cast) t4 t3 h d))
+(lift h d (THead (Flat Cast) t3 t0)) (lift_head (Flat Cast) t3 t0 h
+d)))))))))))))) e t1 t2 H))))).
theorem ty3_correct:
\forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t2: T).((ty3 g c
Appl) w (THead (Bind Abst) u x1)) (ty3_appl g c0 w u H0 (THead (Bind Abst) u
t) x1 (ty3_bind g c0 u x2 H9 Abst t x1 H10 x3 H11)))))))))) (ty3_gen_bind g
Abst c0 u t x0 H7)))) H6)))) H4))))))))))) (\lambda (c0: C).(\lambda (t0:
-T).(\lambda (t3: T).(\lambda (_: (ty3 g c0 t0 t3)).(\lambda (H1: (ex T
-(\lambda (t: T).(ty3 g c0 t3 t)))).(\lambda (t4: T).(\lambda (_: (ty3 g c0 t3
-t4)).(\lambda (_: (ex T (\lambda (t: T).(ty3 g c0 t4 t)))).H1)))))))) c t1 t2
-H))))).
+T).(\lambda (t3: T).(\lambda (_: (ty3 g c0 t0 t3)).(\lambda (_: (ex T
+(\lambda (t: T).(ty3 g c0 t3 t)))).(\lambda (t4: T).(\lambda (H2: (ty3 g c0
+t3 t4)).(\lambda (H3: (ex T (\lambda (t: T).(ty3 g c0 t4 t)))).(let H4 \def
+H3 in (ex_ind T (\lambda (t: T).(ty3 g c0 t4 t)) (ex T (\lambda (t: T).(ty3 g
+c0 (THead (Flat Cast) t4 t3) t))) (\lambda (x: T).(\lambda (H5: (ty3 g c0 t4
+x)).(ex_intro T (\lambda (t: T).(ty3 g c0 (THead (Flat Cast) t4 t3) t))
+(THead (Flat Cast) x t4) (ty3_cast g c0 t3 t4 H2 x H5)))) H4)))))))))) c t1
+t2 H))))).
theorem ty3_unique:
\forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (t1: T).((ty3 g c u
w v t2 H4))))))))))))) (\lambda (c0: C).(\lambda (t0: T).(\lambda (t2:
T).(\lambda (_: (ty3 g c0 t0 t2)).(\lambda (_: ((\forall (t3: T).((ty3 g c0
t0 t3) \to (pc3 c0 t2 t3))))).(\lambda (t3: T).(\lambda (_: (ty3 g c0 t2
-t3)).(\lambda (_: ((\forall (t4: T).((ty3 g c0 t2 t4) \to (pc3 c0 t3
+t3)).(\lambda (H3: ((\forall (t4: T).((ty3 g c0 t2 t4) \to (pc3 c0 t3
t4))))).(\lambda (t4: T).(\lambda (H4: (ty3 g c0 (THead (Flat Cast) t2 t0)
-t4)).(and_ind (pc3 c0 t2 t4) (ty3 g c0 t0 t2) (pc3 c0 t2 t4) (\lambda (H5:
-(pc3 c0 t2 t4)).(\lambda (_: (ty3 g c0 t0 t2)).H5)) (ty3_gen_cast g c0 t0 t2
-t4 H4)))))))))))) c u t1 H))))).
+t4)).(ex3_ind T (\lambda (t5: T).(pc3 c0 (THead (Flat Cast) t5 t2) t4))
+(\lambda (_: T).(ty3 g c0 t0 t2)) (\lambda (t5: T).(ty3 g c0 t2 t5)) (pc3 c0
+(THead (Flat Cast) t3 t2) t4) (\lambda (x0: T).(\lambda (H5: (pc3 c0 (THead
+(Flat Cast) x0 t2) t4)).(\lambda (_: (ty3 g c0 t0 t2)).(\lambda (H7: (ty3 g
+c0 t2 x0)).(pc3_t (THead (Flat Cast) x0 t2) c0 (THead (Flat Cast) t3 t2)
+(pc3_head_1 c0 t3 x0 (H3 x0 H7) (Flat Cast) t2) t4 H5))))) (ty3_gen_cast g c0
+t0 t2 t4 H4)))))))))))) c u t1 H))))).
theorem ty3_gen_abst_abst:
\forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (t1: T).(\forall
\lambda (g: G).(\lambda (c: C).(\lambda (t: T).(\lambda (v: T).(\lambda (H:
(ty3 g c t v)).(ex_ind T (\lambda (t0: T).(ty3 g c v t0)) (ex T (\lambda (u:
T).(ty3 g c (THead (Flat Cast) v t) u))) (\lambda (x: T).(\lambda (H0: (ty3 g
-c v x)).(ex_intro T (\lambda (u: T).(ty3 g c (THead (Flat Cast) v t) u)) v
-(ty3_cast g c t v H x H0)))) (ty3_correct g c t v H)))))).
+c v x)).(ex_intro T (\lambda (u: T).(ty3 g c (THead (Flat Cast) v t) u))
+(THead (Flat Cast) x v) (ty3_cast g c t v H x H0)))) (ty3_correct g c t v
+H)))))).
d y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u t0 (lift (S O) d y2))))
(\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))) (ex3_2 T T (\lambda (y1:
T).(\lambda (_: T).(subst1 d u (THead (Flat Cast) t4 t3) (lift (S O) d y1))))
-(\lambda (_: T).(\lambda (y2: T).(subst1 d u t4 (lift (S O) d y2)))) (\lambda
-(y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda (x0: T).(\lambda (x1:
-T).(\lambda (H8: (subst1 d u t4 (lift (S O) d x0))).(\lambda (_: (subst1 d u
-t0 (lift (S O) d x1))).(\lambda (H10: (ty3 g a x0 x1)).(let H11 \def (H1 e u
-d H4 a0 H5 a H6) in (ex3_2_ind T T (\lambda (y1: T).(\lambda (_: T).(subst1 d
-u t3 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u t4
-(lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))
-(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(subst1 d u (THead (Flat Cast) t4
-t3) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u t4
-(lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))))
-(\lambda (x2: T).(\lambda (x3: T).(\lambda (H12: (subst1 d u t3 (lift (S O) d
+(\lambda (_: T).(\lambda (y2: T).(subst1 d u (THead (Flat Cast) t0 t4) (lift
+(S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (H8: (subst1 d u t4 (lift (S O) d
+x0))).(\lambda (H9: (subst1 d u t0 (lift (S O) d x1))).(\lambda (H10: (ty3 g
+a x0 x1)).(let H11 \def (H1 e u d H4 a0 H5 a H6) in (ex3_2_ind T T (\lambda
+(y1: T).(\lambda (_: T).(subst1 d u t3 (lift (S O) d y1)))) (\lambda (_:
+T).(\lambda (y2: T).(subst1 d u t4 (lift (S O) d y2)))) (\lambda (y1:
+T).(\lambda (y2: T).(ty3 g a y1 y2))) (ex3_2 T T (\lambda (y1: T).(\lambda
+(_: T).(subst1 d u (THead (Flat Cast) t4 t3) (lift (S O) d y1)))) (\lambda
+(_: T).(\lambda (y2: T).(subst1 d u (THead (Flat Cast) t0 t4) (lift (S O) d
+y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda (x2:
+T).(\lambda (x3: T).(\lambda (H12: (subst1 d u t3 (lift (S O) d
x2))).(\lambda (H13: (subst1 d u t4 (lift (S O) d x3))).(\lambda (H14: (ty3 g
a x2 x3)).(let H15 \def (eq_ind T x3 (\lambda (t: T).(ty3 g a x2 t)) H14 x0
(subst1_confluence_lift t4 x3 u d H13 x0 H8)) in (ex3_2_intro T T (\lambda
(y1: T).(\lambda (_: T).(subst1 d u (THead (Flat Cast) t4 t3) (lift (S O) d
-y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u t4 (lift (S O) d y2))))
-(\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))) (THead (Flat Cast) x0 x2)
-x0 (eq_ind_r T (THead (Flat Cast) (lift (S O) d x0) (lift (S O) d x2))
-(\lambda (t: T).(subst1 d u (THead (Flat Cast) t4 t3) t)) (subst1_head u t4
-(lift (S O) d x0) d H8 (Flat Cast) t3 (lift (S O) d x2) H12) (lift (S O) d
-(THead (Flat Cast) x0 x2)) (lift_flat Cast x0 x2 (S O) d)) H8 (ty3_cast g a
-x2 x0 H15 x1 H10)))))))) H11))))))) H7)))))))))))))))))) c t1 t2 H))))).
+y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u (THead (Flat Cast) t0 t4)
+(lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))
+(THead (Flat Cast) x0 x2) (THead (Flat Cast) x1 x0) (eq_ind_r T (THead (Flat
+Cast) (lift (S O) d x0) (lift (S O) d x2)) (\lambda (t: T).(subst1 d u (THead
+(Flat Cast) t4 t3) t)) (subst1_head u t4 (lift (S O) d x0) d H8 (Flat Cast)
+t3 (lift (S O) d x2) H12) (lift (S O) d (THead (Flat Cast) x0 x2)) (lift_flat
+Cast x0 x2 (S O) d)) (eq_ind_r T (THead (Flat Cast) (lift (S O) d x1) (lift
+(S O) d x0)) (\lambda (t: T).(subst1 d u (THead (Flat Cast) t0 t4) t))
+(subst1_head u t0 (lift (S O) d x1) d H9 (Flat Cast) t4 (lift (S O) d x0) H8)
+(lift (S O) d (THead (Flat Cast) x1 x0)) (lift_flat Cast x1 x0 (S O) d))
+(ty3_cast g a x2 x0 H15 x1 H10)))))))) H11))))))) H7)))))))))))))))))) c t1
+t2 H))))).
theorem ty3_gen_cvoid:
\forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t2: T).((ty3 g c
(\lambda (_: T).(\lambda (y2: T).(eq T t0 (lift (S O) d y2)))) (\lambda (y1:
T).(\lambda (y2: T).(ty3 g a y1 y2))) (ex3_2 T T (\lambda (y1: T).(\lambda
(_: T).(eq T (THead (Flat Cast) t4 t3) (lift (S O) d y1)))) (\lambda (_:
-T).(\lambda (y2: T).(eq T t4 (lift (S O) d y2)))) (\lambda (y1: T).(\lambda
-(y2: T).(ty3 g a y1 y2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H7:
-(eq T t4 (lift (S O) d x0))).(\lambda (H8: (eq T t0 (lift (S O) d
-x1))).(\lambda (H9: (ty3 g a x0 x1)).(let H10 \def (eq_ind T t0 (\lambda (t:
-T).(ty3 g c0 t4 t)) H2 (lift (S O) d x1) H8) in (let H11 \def (eq_ind T t4
-(\lambda (t: T).(ty3 g c0 t (lift (S O) d x1))) H10 (lift (S O) d x0) H7) in
-(let H12 \def (eq_ind T t4 (\lambda (t: T).(\forall (e0: C).(\forall (u0:
-T).(\forall (d0: nat).((getl d0 c0 (CHead e0 (Bind Void) u0)) \to (\forall
-(a0: C).((drop (S O) d0 c0 a0) \to (ex3_2 T T (\lambda (y1: T).(\lambda (_:
-T).(eq T t3 (lift (S O) d0 y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T t
-(lift (S O) d0 y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a0 y1
-y2))))))))))) H1 (lift (S O) d x0) H7) in (let H13 \def (eq_ind T t4 (\lambda
-(t: T).(ty3 g c0 t3 t)) H0 (lift (S O) d x0) H7) in (eq_ind_r T (lift (S O) d
-x0) (\lambda (t: T).(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T (THead
-(Flat Cast) t t3) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T
-t (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))))
-(let H14 \def (H12 e u d H4 a H5) in (ex3_2_ind T T (\lambda (y1: T).(\lambda
-(_: T).(eq T t3 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T
-(lift (S O) d x0) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
-g a y1 y2))) (ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T (THead (Flat
-Cast) (lift (S O) d x0) t3) (lift (S O) d y1)))) (\lambda (_: T).(\lambda
-(y2: T).(eq T (lift (S O) d x0) (lift (S O) d y2)))) (\lambda (y1:
-T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda (x2: T).(\lambda (x3:
-T).(\lambda (H15: (eq T t3 (lift (S O) d x2))).(\lambda (H16: (eq T (lift (S
-O) d x0) (lift (S O) d x3))).(\lambda (H17: (ty3 g a x2 x3)).(let H18 \def
-(eq_ind T t3 (\lambda (t: T).(ty3 g c0 t (lift (S O) d x0))) H13 (lift (S O)
-d x2) H15) in (eq_ind_r T (lift (S O) d x2) (\lambda (t: T).(ex3_2 T T
-(\lambda (y1: T).(\lambda (_: T).(eq T (THead (Flat Cast) (lift (S O) d x0)
-t) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T (lift (S O) d
-x0) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1
-y2))))) (let H19 \def (eq_ind_r T x3 (\lambda (t: T).(ty3 g a x2 t)) H17 x0
-(lift_inj x0 x3 (S O) d H16)) in (eq_ind T (lift (S O) d (THead (Flat Cast)
-x0 x2)) (\lambda (t: T).(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T t
-(lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T (lift (S O) d x0)
-(lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))))
-(ex3_2_intro T T (\lambda (y1: T).(\lambda (_: T).(eq T (lift (S O) d (THead
-(Flat Cast) x0 x2)) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq
-T (lift (S O) d x0) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2:
-T).(ty3 g a y1 y2))) (THead (Flat Cast) x0 x2) x0 (refl_equal T (lift (S O) d
-(THead (Flat Cast) x0 x2))) (refl_equal T (lift (S O) d x0)) (ty3_cast g a x2
-x0 H19 x1 H9)) (THead (Flat Cast) (lift (S O) d x0) (lift (S O) d x2))
-(lift_flat Cast x0 x2 (S O) d))) t3 H15))))))) H14)) t4 H7))))))))))
-H6)))))))))))))))) c t1 t2 H))))).
+T).(\lambda (y2: T).(eq T (THead (Flat Cast) t0 t4) (lift (S O) d y2))))
+(\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H7: (eq T t4 (lift (S O) d x0))).(\lambda (H8:
+(eq T t0 (lift (S O) d x1))).(\lambda (H9: (ty3 g a x0 x1)).(let H10 \def
+(eq_ind T t0 (\lambda (t: T).(ty3 g c0 t4 t)) H2 (lift (S O) d x1) H8) in
+(eq_ind_r T (lift (S O) d x1) (\lambda (t: T).(ex3_2 T T (\lambda (y1:
+T).(\lambda (_: T).(eq T (THead (Flat Cast) t4 t3) (lift (S O) d y1))))
+(\lambda (_: T).(\lambda (y2: T).(eq T (THead (Flat Cast) t t4) (lift (S O) d
+y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))))) (let H11 \def
+(eq_ind T t4 (\lambda (t: T).(ty3 g c0 t (lift (S O) d x1))) H10 (lift (S O)
+d x0) H7) in (let H12 \def (eq_ind T t4 (\lambda (t: T).(\forall (e0:
+C).(\forall (u0: T).(\forall (d0: nat).((getl d0 c0 (CHead e0 (Bind Void)
+u0)) \to (\forall (a0: C).((drop (S O) d0 c0 a0) \to (ex3_2 T T (\lambda (y1:
+T).(\lambda (_: T).(eq T t3 (lift (S O) d0 y1)))) (\lambda (_: T).(\lambda
+(y2: T).(eq T t (lift (S O) d0 y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
+g a0 y1 y2))))))))))) H1 (lift (S O) d x0) H7) in (let H13 \def (eq_ind T t4
+(\lambda (t: T).(ty3 g c0 t3 t)) H0 (lift (S O) d x0) H7) in (eq_ind_r T
+(lift (S O) d x0) (\lambda (t: T).(ex3_2 T T (\lambda (y1: T).(\lambda (_:
+T).(eq T (THead (Flat Cast) t t3) (lift (S O) d y1)))) (\lambda (_:
+T).(\lambda (y2: T).(eq T (THead (Flat Cast) (lift (S O) d x1) t) (lift (S O)
+d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))))) (let H14 \def
+(H12 e u d H4 a H5) in (ex3_2_ind T T (\lambda (y1: T).(\lambda (_: T).(eq T
+t3 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T (lift (S O) d
+x0) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))
+(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T (THead (Flat Cast) (lift (S
+O) d x0) t3) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(eq T
+(THead (Flat Cast) (lift (S O) d x1) (lift (S O) d x0)) (lift (S O) d y2))))
+(\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2)))) (\lambda (x2:
+T).(\lambda (x3: T).(\lambda (H15: (eq T t3 (lift (S O) d x2))).(\lambda
+(H16: (eq T (lift (S O) d x0) (lift (S O) d x3))).(\lambda (H17: (ty3 g a x2
+x3)).(let H18 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t (lift (S O) d
+x0))) H13 (lift (S O) d x2) H15) in (eq_ind_r T (lift (S O) d x2) (\lambda
+(t: T).(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T (THead (Flat Cast)
+(lift (S O) d x0) t) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2:
+T).(eq T (THead (Flat Cast) (lift (S O) d x1) (lift (S O) d x0)) (lift (S O)
+d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))))) (let H19 \def
+(eq_ind_r T x3 (\lambda (t: T).(ty3 g a x2 t)) H17 x0 (lift_inj x0 x3 (S O) d
+H16)) in (eq_ind T (lift (S O) d (THead (Flat Cast) x0 x2)) (\lambda (t:
+T).(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T t (lift (S O) d y1))))
+(\lambda (_: T).(\lambda (y2: T).(eq T (THead (Flat Cast) (lift (S O) d x1)
+(lift (S O) d x0)) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2:
+T).(ty3 g a y1 y2))))) (eq_ind T (lift (S O) d (THead (Flat Cast) x1 x0))
+(\lambda (t: T).(ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(eq T (lift (S O)
+d (THead (Flat Cast) x0 x2)) (lift (S O) d y1)))) (\lambda (_: T).(\lambda
+(y2: T).(eq T t (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g
+a y1 y2))))) (ex3_2_intro T T (\lambda (y1: T).(\lambda (_: T).(eq T (lift (S
+O) d (THead (Flat Cast) x0 x2)) (lift (S O) d y1)))) (\lambda (_: T).(\lambda
+(y2: T).(eq T (lift (S O) d (THead (Flat Cast) x1 x0)) (lift (S O) d y2))))
+(\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))) (THead (Flat Cast) x0 x2)
+(THead (Flat Cast) x1 x0) (refl_equal T (lift (S O) d (THead (Flat Cast) x0
+x2))) (refl_equal T (lift (S O) d (THead (Flat Cast) x1 x0))) (ty3_cast g a
+x2 x0 H19 x1 H9)) (THead (Flat Cast) (lift (S O) d x1) (lift (S O) d x0))
+(lift_flat Cast x1 x0 (S O) d)) (THead (Flat Cast) (lift (S O) d x0) (lift (S
+O) d x2)) (lift_flat Cast x0 x2 (S O) d))) t3 H15))))))) H14)) t4 H7)))) t0
+H8))))))) H6)))))))))))))))) c t1 t2 H))))).
t2) (THead (Flat Cast) v2 t6)) (\lambda (x: T).(\lambda (H18: (ty3 g c0 v2
x)).(ex_ind T (\lambda (t: T).(ty3 g c0 t6 t)) (ty3 g c0 (THead (Flat Cast)
t3 t2) (THead (Flat Cast) v2 t6)) (\lambda (x0: T).(\lambda (H19: (ty3 g c0
-t6 x0)).(ty3_conv g c0 (THead (Flat Cast) v2 t6) v2 (ty3_cast g c0 t6 v2
-(ty3_sconv g c0 t6 x0 H19 t3 v2 H_y0 H17) x H18) (THead (Flat Cast) t3 t2) t3
-(ty3_cast g c0 t2 t3 H0 v2 H_y0) (pc3_s c0 t3 (THead (Flat Cast) v2 t6)
-(pc3_pr2_u c0 t6 (THead (Flat Cast) v2 t6) (pr2_free c0 (THead (Flat Cast) v2
-t6) t6 (pr0_epsilon t6 t6 (pr0_refl t6) v2)) t3 H17))))) (ty3_correct g c0 t2
-t6 H_y)))) (ty3_correct g c0 t3 v2 H_y0))))))) t4 H14)) t5 (sym_eq T t5 t2
-H13))) v1 (sym_eq T v1 t3 H12))) H11))) c1 (sym_eq C c1 c0 H7) H8 H9 H5
-H6))))]) in (H5 (refl_equal C c0) (refl_equal T (THead (Flat Cast) t3 t2))
-(refl_equal T t4))))))))))))) c u t1 H))))).
+t6 x0)).(ty3_conv g c0 (THead (Flat Cast) v2 t6) (THead (Flat Cast) x v2)
+(ty3_cast g c0 t6 v2 (ty3_sconv g c0 t6 x0 H19 t3 v2 H_y0 H17) x H18) (THead
+(Flat Cast) t3 t2) (THead (Flat Cast) v2 t3) (ty3_cast g c0 t2 t3 H0 v2 H_y0)
+(pc3_s c0 (THead (Flat Cast) v2 t3) (THead (Flat Cast) v2 t6) (pc3_thin_dx c0
+t6 t3 H17 v2 Cast))))) (ty3_correct g c0 t2 t6 H_y)))) (ty3_correct g c0 t3
+v2 H_y0))))))) t4 H14)) t5 (sym_eq T t5 t2 H13))) v1 (sym_eq T v1 t3 H12)))
+H11))) c1 (sym_eq C c1 c0 H7) H8 H9 H5 H6))))]) in (H5 (refl_equal C c0)
+(refl_equal T (THead (Flat Cast) t3 t2)) (refl_equal T t4))))))))))))) c u t1
+H))))).