(****************************************************************************)
-type type_class = Other
- | Ind
- | Con of C.lazy_term
-
let premise_pattern what = None, [what, C.Implicit (Some `Hole)], None
let get_inductive_def uri =
let premises, _ = split [] ty in
List.fold_left map mutinds (List.tl premises)
in
+ let msg = "recursiveness check non implemented for mutually inductive types" in
+ if List.length tys > 1 then raise (PET.Fail (lazy msg)) else
let _, _, _, constructors = List.nth tys tyno in
let mutinds = List.fold_left map I.S.empty constructors in
I.S.is_empty mutinds
-let rec check_type sorts metasenv context = function
- | C.MutInd (uri, tyno, _) as t ->
- let lpsno, tys = get_inductive_def uri in
- let _, inductive, arity, _ = List.nth tys tyno in
- let _, psno = split [] arity in
- let not_relation = (lpsno = psno) in
- let not_recursive = is_not_recursive uri tyno tys in
- let ty_ty, _ = TC.type_of_aux' metasenv context t Un.empty_ugraph in
- let sort = match split context ty_ty with
- | C.Sort sort ::_ , _ -> CicPp.ppsort sort
- | C.Meta _ :: _, _ -> CicPp.ppsort (C.Type (Un.fresh ()))
- | _ -> assert false
- in
- let right_sort = List.mem sort sorts in
- if not_relation && inductive && not_recursive && right_sort then
- (HLog.warn (Printf.sprintf "Decomposing %s %u %b %u %u %b" (UriManager.string_of_uri uri) (succ tyno) inductive lpsno psno not_recursive);
- Ind)
- else Other
-(* | C.Const (uri, _) as t ->
- if List.mem (uri, None) types then Con (PET.const_lazy_term t) else Other
-*) | C.Appl (hd :: tl) -> check_type sorts metasenv context hd
- | _ -> Other
+let rec check_type sorts metasenv context t =
+ match R.whd ~delta:true context t with
+ | C.MutInd (uri, tyno, _) as t ->
+ let lpsno, tys = get_inductive_def uri in
+ let _, inductive, arity, _ = List.nth tys tyno in
+ let _, psno = split [] arity in
+ let not_relation = (lpsno = psno) in
+ let not_recursive = is_not_recursive uri tyno tys in
+ let ty_ty, _ = TC.type_of_aux' metasenv context t Un.empty_ugraph in
+ let sort = match split context ty_ty with
+ | C.Sort sort ::_ , _ -> CicPp.ppsort sort
+ | C.Meta _ :: _, _ -> CicPp.ppsort (C.Type (Un.fresh ()))
+ | _ -> assert false
+ in
+ let right_sort = List.mem sort sorts in
+ if not_relation && inductive && not_recursive && right_sort then
+ begin
+ HLog.warn (Printf.sprintf "Decomposing %s %u" (UriManager.string_of_uri uri) (succ tyno));
+ true
+ end
+ else false
+ | C.Appl (hd :: tl) -> check_type sorts metasenv context hd
+ | _ -> false
(* unexported tactics *******************************************************)
let _, metasenv, _, _, _ = proof in
let _, context, _ = CicUtil.lookup_meta goal metasenv in
let index, ty = H.lookup_type metasenv context what in
- let tac = match check_type sorts metasenv context (S.lift index ty) with
- | Ind -> T.then_ ~start:(P.elim_intros_tac ~mk_fresh_name_callback (C.Rel index))
- ~continuation:(PESR.clear [what])
- | Con t -> RT.unfold_tac (Some t) ~pattern:(premise_pattern what)
- | Other ->
+ let tac =
+ if check_type sorts metasenv context (S.lift index ty) then
+ T.then_ ~start:(P.elim_intros_tac ~mk_fresh_name_callback (C.Rel index))
+ ~continuation:(PESR.clear [what])
+ else
let msg = "unexported elim_clear: not an decomposable type" in
raise (PET.Fail (lazy msg))
in
(* roba seria ------------------------------------------------------------- *)
-let decompose_tac ?(sorts=[CicPp.ppsort C.Prop])
+let decompose_tac ?(sorts=[CicPp.ppsort C.Prop; CicPp.ppsort C.CProp])
?(mk_fresh_name_callback = F.mk_fresh_name ~subst:[]) () =
let decompose_tac status =
let (proof, goal) = status in