--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basics/eq.ma".
+include "basics/bool.ma".
+
+ninductive list (A:Type) : Type :=
+ | nil: list A
+ | cons: A -> list A -> list A.
+
+notation "hvbox(hd break :: tl)"
+ right associative with precedence 47
+ for @{'cons $hd $tl}.
+
+notation "[ list0 x sep ; ]"
+ non associative with precedence 90
+ for ${fold right @'nil rec acc @{'cons $x $acc}}.
+
+notation "hvbox(l1 break @ l2)"
+ right associative with precedence 47
+ for @{'append $l1 $l2 }.
+
+interpretation "nil" 'nil = (nil ?).
+interpretation "cons" 'cons hd tl = (cons ? hd tl).
+
+ndefinition not_nil: ∀A:Type.list A → Prop ≝
+ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ].
+
+ntheorem nil_cons:
+ ∀A:Type.∀l:list A.∀a:A. a::l ≠ [].
+ #A; #l; #a; #Heq; nchange with (not_nil ? (a::l));
+ nrewrite > Heq; //;
+nqed.
+
+(*
+let rec id_list A (l: list A) on l :=
+ match l with
+ [ nil => []
+ | (cons hd tl) => hd :: id_list A tl ]. *)
+
+nlet rec append A (l1: list A) l2 on l1 :=
+ match l1 with
+ [ nil ⇒ l2
+ | cons hd tl ⇒ hd :: append A tl l2 ].
+
+ndefinition tail := λA:Type.λl: list A.
+ match l with
+ [ nil ⇒ []
+ | cons hd tl ⇒ tl].
+
+interpretation "append" 'append l1 l2 = (append ? l1 l2).
+
+ntheorem append_nil: ∀A:Type.∀l:list A.l @ [] = l.
+#A; #l; nelim l; nnormalize;//; nqed.
+
+ntheorem associative_append:
+ ∀A:Type.associative (list A) (append A).
+#A; #l1; #l2; #l3; nelim l1; nnormalize; //; nqed.
+
+ntheorem cons_append_commute:
+ ∀A:Type.∀l1,l2:list A.∀a:A.
+ a :: (l1 @ l2) = (a :: l1) @ l2.
+//; nqed.
+
+ntheorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1.
+/2/; nqed.
+
+nlet rec map (A,B:Type) (f: A → B) (l:list A) on l: list B ≝
+ match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)].
+
+nlet rec foldr (A,B:Type) (f:A → B → B) (b:B) (l:list A) on l :B ≝
+ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)].
+
+ndefinition filter ≝
+ λT:Type.λl:list T.λp:T → bool.
+ foldr T (list T) (λx,l0.if_then_else ? (p x) (x::l0) l0).
+
+ntheorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l.
+#A; #B; #f; #g; #l; #eqfg; nelim l; nnormalize; //; nqed.
+