in
try_next 1
;;
+
+(* clean_dummy_dependent_types term *)
+(* returns a copy of [term] where every dummy dependent product *)
+(* have been replaced with a non-dependent product and where *)
+(* dummy let-ins have been removed. *)
+let clean_dummy_dependent_types t =
+ let module C = Cic in
+ let rec aux k =
+ function
+ C.Rel m as t -> t,[m - k]
+ | C.Var (uri,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.Var (uri,exp_named_subst'),rels
+ | C.Meta (i,l) ->
+ let l',rels =
+ List.fold_right
+ (fun t (l,rels) ->
+ let t',rels' =
+ match t with
+ None -> None,[]
+ | Some t ->
+ let t',rels' = aux k t in
+ Some t', rels'
+ in
+ t'::l, rels' @ rels
+ ) l ([],[])
+ in
+ C.Meta(i,l'),rels
+ | C.Sort _ as t -> t,[]
+ | C.Implicit as t -> t,[]
+ | C.Cast (te,ty) ->
+ let te',rels1 = aux k te in
+ let ty',rels2 = aux k ty in
+ C.Cast (te', ty'), rels1@rels2
+ | C.Prod (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ let n' =
+ match n with
+ C.Anonymous ->
+ if List.mem k rels2 then assert false else C.Anonymous
+ | C.Name _ as n ->
+ if List.mem k rels2 then n else C.Anonymous
+ in
+ C.Prod (n', s', t'), rels1@rels2
+ | C.Lambda (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ C.Lambda (n, s', t'), rels1@rels2
+ | C.LetIn (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ let rels = rels1 @ rels2 in
+ if List.mem k rels2 then
+ C.LetIn (n, s', t'), rels
+ else
+ (* (C.Rel 1) is just a dummy term; any term would fit *)
+ CicSubstitution.subst (C.Rel 1) t', rels
+ | C.Appl l ->
+ let l',rels =
+ List.fold_right
+ (fun t (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ t'::exp_named_subst, rels' @ rels
+ ) l ([],[])
+ in
+ C.Appl l', rels
+ | C.Const (uri,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.Const (uri,exp_named_subst'),rels
+ | C.MutInd (uri,tyno,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.MutInd (uri,tyno,exp_named_subst'),rels
+ | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.MutConstruct (uri,tyno,consno,exp_named_subst'),rels
+ | C.MutCase (sp,i,outty,t,pl) ->
+ let outty',rels1 = aux k outty in
+ let t',rels2 = aux k t in
+ let pl',rels3 =
+ List.fold_right
+ (fun t (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ t'::exp_named_subst, rels' @ rels
+ ) pl ([],[])
+ in
+ C.MutCase (sp, i, outty', t', pl'), rels1 @ rels2 @rels3
+ | C.Fix (i, fl) ->
+ let len = List.length fl in
+ let fl',rels =
+ List.fold_right
+ (fun (name,i,ty,bo) (fl,rels) ->
+ let ty',rels1 = aux k ty in
+ let bo',rels2 = aux (k + len) bo in
+ (name,i,ty',bo')::fl, rels1 @ rels2 @ rels
+ ) fl ([],[])
+ in
+ C.Fix (i, fl'),rels
+ | C.CoFix (i, fl) ->
+ let len = List.length fl in
+ let fl',rels =
+ List.fold_right
+ (fun (name,ty,bo) (fl,rels) ->
+ let ty',rels1 = aux k ty in
+ let bo',rels2 = aux (k + len) bo in
+ (name,ty',bo')::fl, rels1 @ rels2 @ rels
+ ) fl ([],[])
+ in
+ C.CoFix (i, fl'),rels
+ in
+ fst (aux 0 t)
+;;