cases (f x n); simplify; exact H;
qed.
-lemma feq_pow: ∀G:dgroup.∀x,y:G.∀n.x≈y → n * x ≈ n * y.
+lemma feq_mul: ∀G:dgroup.∀x,y:G.∀n.x≈y → n * x ≈ n * y.
intros (G x y n H); elim n; [apply eq_reflexive]
simplify; apply (Eq≈ (x + (n1 * y)) H1);
apply (Eq≈ (y+n1*y) H (eq_reflexive ??));
apply (ap_rewl ???w (zero_neutral ??)); assumption;
qed.
-lemma appow_ap: ∀G:dgroup.∀x,y:G.∀n.S n * x # S n * y → x # y.
+lemma apmul_ap: ∀G:dgroup.∀x,y:G.∀n.S n * x # S n * y → x # y.
intros 4 (G x y n); elim n; [2:
simplify in a;
cases (applus ????? a); [assumption]
apply (plus_cancr_ap ??? 0); assumption;
qed.
-lemma pluspow: ∀G:dgroup.∀x,y:G.∀n.n * (x+y) ≈ n * x + n * y.
+lemma plusmul: ∀G:dgroup.∀x,y:G.∀n.n * (x+y) ≈ n * x + n * y.
intros (G x y n); elim n; [
simplify; apply (Eq≈ 0 ? (zero_neutral ? 0)); apply eq_reflexive]
simplify; apply eq_sym; apply (Eq≈ (x+y+(n1*x+n1*y))); [
apply feq_plusl; apply eq_sym; assumption;
qed.
-lemma powzero: ∀G:dgroup.∀n.n*0 ≈ 0. [2: apply dg_carr; apply G]
+lemma mulzero: ∀G:dgroup.∀n.n*0 ≈ 0. [2: apply dg_carr; apply G]
intros; elim n; [simplify; apply eq_reflexive]
simplify; apply (Eq≈ ? (zero_neutral ??)); assumption;
qed.
coercion cic:/matita/ordered_divisible_group/todg_division.con.
-lemma pow_ge: ∀G:todgroup.∀x:G.∀n.0 ≤ x → 0 ≤ n * x.
+lemma mul_ge: ∀G:todgroup.∀x:G.∀n.0 ≤ x → 0 ≤ n * x.
intros (G x n); elim n; simplify; [apply le_reflexive]
apply (le_transitive ???? H1);
apply (le_rewl ??? (0+(n1*x)) (zero_neutral ??));
apply fle_plusr; assumption;
qed.
-lemma lt_ltpow: ∀G:todgroup.∀x,y:G.∀n. x < y → S n * x < S n * y.
+lemma lt_ltmul: ∀G:todgroup.∀x,y:G.∀n. x < y → S n * x < S n * y.
intros; elim n; [simplify; apply flt_plusr; assumption]
simplify; apply (ltplus); [assumption] assumption;
qed.
-lemma ltpow_lt: ∀G:todgroup.∀x,y:G.∀n. S n * x < S n * y → x < y.
+lemma ltmul_lt: ∀G:todgroup.∀x,y:G.∀n. S n * x < S n * y → x < y.
intros 4; elim n; [apply (plus_cancr_lt ??? 0); assumption]
simplify in l; cases (ltplus_orlt ????? l); [assumption]
apply f; assumption;
lemma divide_preserves_lt: ∀G:todgroup.∀e:G.∀n.0<e → 0 < e/n.
intros; elim n; [apply (lt_rewr ???? (div1 ??));assumption]
unfold divide; elim (dg_prop G e (S n1)); simplify; simplify in f;
-apply (ltpow_lt ??? (S n1)); simplify; apply (lt_rewr ???? f);
+apply (ltmul_lt ??? (S n1)); simplify; apply (lt_rewr ???? f);
apply (lt_rewl ???? (zero_neutral ??));
apply (lt_rewl ???? (zero_neutral ??));
-apply (lt_rewl ???? (powzero ?n1));
+apply (lt_rewl ???? (mulzero ?n1));
assumption;
qed.
-lemma poweqplus_lt: ∀G:todgroup.∀x,y:G.∀n,m.
+lemma muleqplus_lt: ∀G:todgroup.∀x,y:G.∀n,m.
0<x → 0<y → S n * x ≈ S (n + S m) * y → y < x.
-intros (G x y n m H1 H2 H3); apply (ltpow_lt ??? n); apply (lt_rewr ???? H3);
+intros (G x y n m H1 H2 H3); apply (ltmul_lt ??? n); apply (lt_rewr ???? H3);
clear H3; elim m; [
rewrite > sym_plus; simplify; apply (lt_rewl ??? (0+(y+n*y))); [
apply eq_sym; apply zero_neutral]
cases (dg_prop (mk_todgroup todg_order todg_division_ H) e 2) 0; simplify;
intro H3;
cut (0<w1) as H4; [2:
- apply (ltpow_lt ??? 2); apply (lt_rewr ???? H2);
- apply (lt_rewl ???? (powzero ? 3)); assumption]
+ apply (ltmul_lt ??? 2); apply (lt_rewr ???? H2);
+ apply (lt_rewl ???? (mulzero ? 3)); assumption]
cut (0<w) as H5; [2:
- apply (ltpow_lt ??? 3); apply (lt_rewr ???? H1);
- apply (lt_rewl ???? (powzero ? 4)); assumption]
+ apply (ltmul_lt ??? 3); apply (lt_rewr ???? H1);
+ apply (lt_rewl ???? (mulzero ? 4)); assumption]
cut (w<w1) as H6; [2:
- apply (poweqplus_lt ??? 2 O); try assumption; apply (Eq≈ ? H2 H1);]
+ apply (muleqplus_lt ??? 2 O); try assumption; apply (Eq≈ ? H2 H1);]
apply (plus_cancr_lt ??? w1);
apply (lt_rewl ??? (w+e)); [
apply (Eq≈ (w+3*w1) ? H2);
lapply (ltwr ??? Hn3) as Hn1n3; lapply (ltwl ??? Hn3) as Hn2n3;
elim (H1 ? Hn1n3) (H3 H4); elim (H2 ? Hn2n3) (H5 H6); clear Hn1n3 Hn2n3;
elim (H n3) (H7 H8); clear H H1 H2;
-lapply (le_to_eqm ??? H7) as Dxm; lapply (le_to_eqj ??? H7) as Dym;
+lapply (le_to_eqm ??? H7) as Dxm; lapply (le_to_eqj ??? H7) as Dym;
(* the main step *)
-cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x); [2:
+cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x) as main_ineq; [2:
apply (le_transitive ???? (mtineq ???? (an n3)));
- lapply (le_mtri ????? H7 H8);
- lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? Hletin);
- cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))); [2:
+ lapply (le_mtri ????? H7 H8) as H9;
+ lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? H9) as H10; clear H9;
+ cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))) as H11; [2:
apply (Eq≈ (0 + δ(an n3) (xn n3)) ? (zero_neutral ??));
apply (Eq≈ (δ(an n3) (xn n3) + 0) ? (plus_comm ???));
apply (Eq≈ (δ(an n3) (xn n3) + (-δ(xn n3) (bn n3) + δ(xn n3) (bn n3))) ? (opp_inverse ??));
apply (Eq≈ (δ(an n3) (xn n3) + (δ(xn n3) (bn n3) + -δ(xn n3) (bn n3))) ? (plus_comm ?? (δ(xn n3) (bn n3))));
- apply (Eq≈ ? ? (eq_sym ??? (plus_assoc ????))); assumption;] clear Hletin1;
- apply (le_rewl ??? ( δ(an n3) (xn n3)+ δ(an n3) x));[
- apply feq_plusr; apply msymmetric;]
- apply (le_rewl ??? (δ(an n3) (bn n3)+- δ(xn n3) (bn n3)+ δ(an n3) x));[
- apply feq_plusr; assumption;]
- clear Hcut Hletin Dym Dxm H8 H7 H6 H5 H4 H3;
- apply (le_rewl ??? (- δ(xn n3) (bn n3)+ δ(an n3) (bn n3)+δ(an n3) x));[
- apply feq_plusr; apply plus_comm;]
+ apply (Eq≈ ? ? (eq_sym ??? (plus_assoc ????))); assumption;] clear H10;
+ apply (le_rewl ??? ( δ(an n3) (xn n3)+ δ(an n3) x) (msymmetric ??(an n3)(xn n3)));
+ apply (le_rewl ??? (δ(an n3) (bn n3)+- δ(xn n3) (bn n3)+ δ(an n3) x) H11);
+ clear Dym Dxm H8 H7 H6 H5 H4 H3;
+ apply (le_rewl ??? (- δ(xn n3) (bn n3)+ δ(an n3) (bn n3)+δ(an n3) x) (plus_comm ??(δ(an n3) (bn n3))));
apply (le_rewl ??? (- δ(xn n3) (bn n3)+ (δ(an n3) (bn n3)+δ(an n3) x)) (plus_assoc ????));
apply (le_rewl ??? ((δ(an n3) (bn n3)+δ(an n3) x)+- δ(xn n3) (bn n3)) (plus_comm ???));
apply lew_opp; [apply mpositive] apply fle_plusr;
apply (le_rewr ???? (plus_comm ???));
apply (le_rewr ??? ( δ(an n3) x+ δx (bn n3)) (msymmetric ????));
apply mtineq;]
-split; [
+split; [ (* first the trivial case *)
apply (lt_le_transitive ????? (mpositive ????));
- split; elim He; [apply le_zero_x_to_le_opp_x_zero; assumption;]
- cases t1; [
- left; apply exc_zero_opp_x_to_exc_x_zero;
- apply (Ex≫ ? (eq_opp_opp_x_x ??));assumption;]
- right; apply exc_opp_x_zero_to_exc_zero_x;
- apply (Ex≪ ? (eq_opp_opp_x_x ??)); assumption;]
-clear Dxm Dym H7 H8 Hn3 H5 H3 n1 n2;
+ apply lt_zero_x_to_lt_opp_x_zero; assumption;]
+clear Dxm Dym H7 H8 Hn3 H5 H3 n1 n2; cases H4 (H7 H8); clear H4;
apply (le_lt_transitive ???? ? (sandwich_ineq ?? He));
-apply (le_transitive ???? Hcut);
+apply (le_transitive ???? main_ineq);
apply (le_transitive ?? (e/3+ δ(an n3) x+ δ(an n3) x)); [
repeat apply fle_plusr; cases H6; assumption;]
-apply (le_transitive ?? (e/3+ e/2 + δ(an n3) x)); [
- apply fle_plusr; apply fle_plusl; cases H4; assumption;]
-apply (le_transitive ?? (e/3+ e/2 + e/2)); [
- apply fle_plusl; cases H4; assumption;]
+apply (le_transitive ?? (e/3+ e/2 + δ(an n3) x) ); [apply fle_plusr; apply fle_plusl; assumption]
+apply (le_transitive ?? (e/3+ e/2 + e/2)); [apply fle_plusl; assumption;]
apply le_reflexive;
qed.