--- /dev/null
+include "turing/basic_machines.ma".
+include "turing/if_machine.ma".
+include "turing/auxiliary_machines1.ma".
+include "turing/multi_to_mono/trace_alphabet.ma".
+
+(* a machine that shift the i trace r starting from the bord of the trace *)
+
+(* vec is a coercion. Why should I insert it? *)
+definition mti_step ≝ λsig:FinSet.λn,i.
+ ifTM (multi_sig sig n) (test_char ? (λc:multi_sig sig n.¬(nth i ? (vec … c) (blank ?))==blank ?))
+ (single_finalTM … (ncombf_r (multi_sig sig n) (shift_i sig n i) (all_blank sig n)))
+ (nop ?) tc_true.
+
+definition Rmti_step_true ≝
+λsig,n,i,t1,t2.
+ ∃b:multi_sig sig n. (nth i ? (vec … b) (blank ?) ≠ blank ?) ∧
+ ((∃ls,a,rs.
+ t1 = midtape (multi_sig sig n) ls b (a::rs) ∧
+ t2 = midtape (multi_sig sig n) ((shift_i sig n i b a)::ls) a rs) ∨
+ (∃ls.
+ t1 = midtape ? ls b [] ∧
+ t2 = rightof ? (shift_i sig n i b (all_blank sig n)) ls)).
+
+(* 〈combf0,all_blank sig n〉 *)
+definition Rmti_step_false ≝
+ λsig,n,i,t1,t2.
+ (∀ls,b,rs. t1 = midtape (multi_sig sig n) ls b rs →
+ (nth i ? (vec … b) (blank ?) = blank ?)) ∧ t2 = t1.
+
+lemma sem_mti_step :
+ ∀sig,n,i.
+ mti_step sig n i ⊨
+ [inr … (inl … (inr … start_nop)): Rmti_step_true sig n i, Rmti_step_false sig n i].
+#sig #n #i
+@(acc_sem_if_app (multi_sig sig n) ??????????
+ (sem_test_char …) (sem_ncombf_r (multi_sig sig n) (shift_i sig n i)(all_blank sig n))
+ (sem_nop (multi_sig sig n)))
+ [#intape #outtape #tapea whd in ⊢ (%→%→%); * * #c *
+ #Hcur cases (current_to_midtape … Hcur) #ls * #rs #Hintape
+ #ctest #Htapea * #Hout1 #Hout2 @(ex_intro … c) %
+ [@(\Pf (injective_notb … )) @ctest]
+ generalize in match Hintape; -Hintape cases rs
+ [#Hintape %2 @(ex_intro …ls) % // @Hout1 >Htapea @Hintape
+ |#a #rs1 #Hintape %1
+ @(ex_intro … ls) @(ex_intro … a) @(ex_intro … rs1) % //
+ @Hout2 >Htapea @Hintape
+ ]
+ |#intape #outtape #tapea whd in ⊢ (%→%→%);
+ * #Htest #tapea #outtape
+ % // #ls #b #rs
+ #intape lapply (Htest b ?) [>intape //] -Htest #Htest
+ lapply (injective_notb ? true Htest) -Htest #Htest @(\P Htest)
+ ]
+qed.
+
+(* move tape i machine *)
+definition mti ≝
+ λsig,n,i.whileTM (multi_sig sig n) (mti_step sig n i) (inr … (inl … (inr … start_nop))).
+
+axiom daemon: ∀P:Prop.P.
+
+definition R_mti ≝
+ λsig,n,i,t1,t2.
+ (∀a,rs. t1 = rightof ? a rs → t2 = t1) ∧
+ (∀a,ls,rs.
+ t1 = midtape (multi_sig sig n) ls a rs →
+ (nth i ? (vec … a) (blank ?) = blank ? ∧ t2 = t1) ∨
+ ((∃rs1,b,rs2,rss.
+ rs = rs1@b::rs2 ∧
+ nth i ? (vec … b) (blank ?) = (blank ?) ∧
+ (∀x. mem ? x (a::rs1) → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧
+ shift_l sig n i (a::rs1) rss ∧
+ t2 = midtape (multi_sig sig n) ((reverse ? rss)@ls) b rs2) ∨
+ (∃b,rss.
+ (∀x. mem ? x (a::rs) → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧
+ shift_l sig n i (a::rs) (rss@[b]) ∧
+ t2 = rightof (multi_sig sig n) (shift_i sig n i b (all_blank sig n))
+ ((reverse ? rss)@ls)))).
+
+lemma sem_mti:
+ ∀sig,n,i.
+ WRealize (multi_sig sig n) (mti sig n i) (R_mti sig n i).
+#sig #n #i #inc #j #outc #Hloop
+lapply (sem_while … (sem_mti_step sig n i) inc j outc Hloop) [%]
+-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar)
+[ whd in ⊢ (% → ?); * #H1 #H2 %
+ [#a #rs #Htape1 @H2
+ |#a #ls #rs #Htapea % % [@(H1 … Htapea) |@H2]
+ ]
+| #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse
+ lapply (IH HRfalse) -IH -HRfalse whd in ⊢ (%→%);
+ * #IH1 #IH2 %
+ [#b0 #ls #Htapeb cases Hstar1 #b * #_ *
+ [* #ls0 * #a * #rs0 * >Htapeb #H destruct (H)
+ |* #ls0 * >Htapeb #H destruct (H)
+ ]
+ |#b0 #ls #rs #Htapeb cases Hstar1 #b * #btest *
+ [* #ls1 * #a * #rs1 * >Htapeb #H destruct (H) #Htapec
+ %2 cases (IH2 … Htapec)
+ [(* case a = None *)
+ * #testa #Hout %1
+ %{[ ]} %{a} %{rs1} %{[shift_i sig n i b a]} %
+ [%[%[% // |#x #Hb >(mem_single ??? Hb) // ]
+ |@daemon]
+ |>Hout >reverse_single @Htapec
+ ]
+ |*
+ [ (* case a \= None and exists b = None *) -IH1 -IH2 #IH
+ %1 cases IH -IH #rs10 * #b0 * #rs2 * #rss * * * *
+ #H1 #H2 #H3 #H4 #H5
+ %{(a::rs10)} %{b0} %{rs2} %{(shift_i sig n i b a::rss)}
+ %[%[%[%[>H1 //|@H2]
+ |#x * [#eqxa >eqxa (*?? *) @daemon|@H3]]
+ |@daemon]
+ |>H5 >reverse_cons >associative_append //
+ ]
+ | (* case a \= None and we reach the end of the (full) tape *) -IH1 -IH2 #IH
+ %2 cases IH -IH #b0 * #rss * * #H1 #H2 #H3
+ %{b0} %{(shift_i sig n i b a::rss)}
+ %[%[#x * [#eqxb >eqxb @btest|@H1]
+ |@daemon]
+ |>H3 >reverse_cons >associative_append //
+ ]
+ ]
+ ]
+ |(* b \= None but the left tape is empty *)
+ * #ls0 * >Htapeb #H destruct (H) #Htapec
+ %2 %2 %{b} %{[ ]}
+ %[%[#x * [#eqxb >eqxb @btest|@False_ind]
+ |@daemon (*shift of dingle char OK *)]
+ |>(IH1 … Htapec) >Htapec //
+ ]
+ ]
+qed.
+
+lemma WF_mti_niltape:
+ ∀sig,n,i. WF ? (inv ? (Rmti_step_true sig n i)) (niltape ?).
+#sig #n #i @wf #t1 whd in ⊢ (%→?); * #b * #_ *
+ [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ]
+qed.
+
+lemma WF_mti_rightof:
+ ∀sig,n,i,a,ls. WF ? (inv ? (Rmti_step_true sig n i)) (rightof ? a ls).
+#sig #n #i #a #ls @wf #t1 whd in ⊢ (%→?); * #b * #_ *
+ [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ]
+qed.
+
+lemma WF_mti_leftof:
+ ∀sig,n,i,a,ls. WF ? (inv ? (Rmti_step_true sig n i)) (leftof ? a ls).
+#sig #n #i #a #ls @wf #t1 whd in ⊢ (%→?); * #b * #_ *
+ [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ]
+qed.
+
+lemma terminate_mti:
+ ∀sig,n,i.∀t. Terminate ? (mti sig n i) t.
+#sig #n #i #t @(terminate_while … (sem_mti_step sig n i)) [%]
+cases t // #ls #c #rs lapply c -c lapply ls -ls elim rs
+ [#ls #c @wf #t1 whd in ⊢ (%→?); * #b * #_ *
+ [* #ls1 * #a * #rs1 * #H destruct
+ |* #ls1 * #H destruct #Ht1 >Ht1 //
+ ]
+ |#a #rs1 #Hind #ls #c @wf #t1 whd in ⊢ (%→?); * #b * #_ *
+ [* #ls1 * #a2 * #rs2 * #H destruct (H) #Ht1 >Ht1 //
+ |* #ls1 * #H destruct
+ ]
+ ]
+qed.
+
+lemma ssem_mti: ∀sig,n,i.
+ Realize ? (mti sig n i) (R_mti sig n i).
+/2/ qed.
+