open Pure
open Num
-let bomb = ref(`Var ~-1);;
+let bomb = ref(`Var(-1,-666));;
type problem =
{ freshno: int
(* let ($) f x = f x;; *)
-let subterms tms freshno =
+(* let subterms tms freshno =
let apply_var =
let no = ref freshno in
function t -> incr no; mk_app t (`Var !no) in
in let tms' = (* Util.sort_uniq ~compare:eta_compare*) (Util.concat_map aux tms) in
tms @ tms'
(* List.map (fun (t, v) -> match t with `N _ -> t | _ -> mk_app t v) (List.combine tms (List.mapi (fun i _ -> `Var(freshno+i)) tms)) *)
-;;
+;; *)
let all_terms p =
(match p.div with None -> [] | Some t -> [(t :> i_n_var)])
failwith reason
;;
-let make_fresh_var p =
+let make_fresh_var p arity =
let freshno = p.freshno + 1 in
- {p with freshno}, `Var freshno
+ {p with freshno}, `Var(freshno,arity)
;;
-let make_fresh_vars p m =
- Array.fold_left
+let make_fresh_vars p arities =
+ List.fold_right
(* fold_left vs. fold_right hides/shows the bug in problem q7 *)
- (fun (p, vars) _ -> let p, var = make_fresh_var p in p, var::vars)
+ (fun arity (p, vars) -> let p, var = make_fresh_var p arity in p, var::vars)
+ arities
(p, [])
- (Array.make m ())
;;
let simple_expand_match ps =
let rec aux level = function
| #i_num_var as t -> aux_i_num_var level t
- | `Lam(b,ar,t) -> `Lam(b,ar,aux (level+1) t)
+ | `Lam(b,t) -> `Lam(b,aux (level+1) t)
and aux_i_num_var level = function
- | `Match(u,ar,bs_lift,bs,args) as torig ->
+ | `Match(u,v,bs_lift,bs,args) as torig ->
let u = aux_i_num_var level u in
bs := List.map (fun (n, x) -> n, aux 0 x) !bs;
(try
(match u with
| #i_n_var as u ->
let i = index_of (lift (-level) u) (ps :> nf list) (* can raise Not_found *)
- in let t = mk_match (`N i) ar bs_lift bs args in
+ in let t = mk_match (`N i) v bs_lift bs args in
if t <> torig then
aux level (t :> nf)
else raise Not_found
| _ -> raise Not_found)
with Not_found ->
- `Match(cast_to_i_num_var u,ar,bs_lift,bs,List.map (aux level) args))
- | `I(k,args) -> `I(k,Listx.map (aux level) args)
+ `Match(cast_to_i_num_var u,v,bs_lift,bs,List.map (aux level) args))
+ | `I(v,args) -> `I(v,Listx.map (aux level) args)
| `N _ | `Var _ as t -> t
in aux_i_num_var 0;;
let t = subst false x inst (t :> nf) in
(*prerr_endline ("SUBSTITUTED t:" ^ print (t :> nf));*)
let freshno,new_t,acc_new_ps =
- expand_match (freshno,acc_ps@`Var(max_int/3)::todo_ps,acc_new_ps) t
+ expand_match (freshno,acc_ps@`Var(max_int/3,-666)::todo_ps,acc_new_ps) t
in
aux (freshno,acc_ps@[new_t],acc_new_ps) todo_ps
and expand_match ((freshno,acc_ps,acc_new_ps) as acc) t =
match t with
- | `Match(u',ar,bs_lift,bs,args) ->
+ | `Match(u',orig,bs_lift,bs,args) ->
let freshno,u,acc_new_ps = expand_match acc (u' :> nf) in
let acc_new_ps,i =
match u with
if List.exists (fun (j,_) -> i=j) !bs then
freshno
else
- let freshno,v = freshno+1, `Var (freshno+1) in (* make_fresh_var freshno in *)
+ let freshno,v = freshno+1, `Var (freshno+1, snd orig - 1) in (* make_fresh_var freshno in *)
bs := !bs @ [i, v] ;
freshno in
(*prerr_endlie ("t DA RIDURRE:" ^ print (`Match(`N i,arity,bs_lift,bs,args) :> nf) ^ " more_args=" ^ string_of_int more_args);*)
- let t = mk_match (`N i) ar bs_lift bs args in
+ let t = mk_match (`N i) orig bs_lift bs args in
(*prerr_endline ("NUOVO t:" ^ print (fst t :> nf) ^ " more_args=" ^ string_of_int (snd t));*)
expand_match (freshno,acc_ps,acc_new_ps) t
| `Lam _ -> raise ExpandedToLambda
(match t with
`N _ -> List.iter (dangerous arities showstoppers) args
| `Match _ as t -> dangerous arities showstoppers t ; List.iter (dangerous arities showstoppers) args
- | `Var x -> dangerous_inert arities showstoppers x args 2 (* 2 coming from Scott's encoding *)
- | `I(x,args') -> dangerous_inert arities showstoppers x (Listx.to_list args' @ args) 2 (* 2 coming from Scott's encoding *)
+ | `Var(x,_) -> dangerous_inert arities showstoppers x args 2 (* 2 coming from Scott's encoding *)
+ | `I((x,_),args') -> dangerous_inert arities showstoppers x (Listx.to_list args' @ args) 2 (* 2 coming from Scott's encoding *)
)
- | `I(k,args) -> dangerous_inert arities showstoppers k (Listx.to_list args) 0
+ | `I((k,_),args) -> dangerous_inert arities showstoppers k (Listx.to_list args) 0
and dangerous_inert arities showstoppers k args more_args =
List.iter (dangerous arities showstoppers) args ;
(match t with
`N _ -> concat_map (dangerous_conv arities showstoppers) args
| `Match _ as t -> dangerous_conv arities showstoppers t @ concat_map (dangerous_conv arities showstoppers) args
- | `Var x -> dangerous_inert_conv arities showstoppers x args 2 (* 2 coming from Scott's encoding *)
- | `I(x,args') -> dangerous_inert_conv arities showstoppers x (Listx.to_list args' @ args) 2 (* 2 coming from Scott's encoding *)
+ | `Var(x,_) -> dangerous_inert_conv arities showstoppers x args 2 (* 2 coming from Scott's encoding *)
+ | `I((x,_),args') -> dangerous_inert_conv arities showstoppers x (Listx.to_list args' @ args) 2 (* 2 coming from Scott's encoding *)
)
- | `I(k,args) -> dangerous_inert_conv arities showstoppers k (Listx.to_list args) 0
+ | `I((k,_),args) -> dangerous_inert_conv arities showstoppers k (Listx.to_list args) 0
and dangerous_inert_conv arities showstoppers k args more_args =
concat_map (dangerous_conv arities showstoppers) args @
let showstoppers_eat =
let heads_and_arities =
List.sort (fun (k,_) (h,_) -> compare k h)
- (filter_map (function `Var k -> Some (k,0) | `I(k,args) -> Some (k,Listx.length args) | _ -> None ) p.ps) in
+ (filter_map (function `Var(k,_) -> Some (k,0) | `I((k,_),args) -> Some (k,Listx.length args) | _ -> None ) p.ps) in
let rec multiple_arities =
function
[]
then p
else
let n = match div with `I(_,args) -> Listx.length args | `Var _ -> 0 in
- let p, bomb' = make_fresh_var p in
- (if !bomb <> `Var (-1) then
+ let p, bomb' = make_fresh_var p (-666) in
+ (if !bomb <> `Var (-1,-666) then
failwithProblem p
("Bomb was duplicated! It was " ^ string_of_nf !bomb ^
", tried to change it to " ^ string_of_nf bomb'));
`Continue p
let instantiate p x n =
- (if `Var x = !bomb
+ (if hd_of_i_var (cast_to_i_var !bomb) = x
then failwithProblem p ("BOMB (" ^ string_of_nf !bomb ^ ") cannot be instantiated!"));
- let p,vars = make_fresh_vars p n in
- let p,zero = make_fresh_var p in
- let zero = Listx.Nil zero in
- let args = if n = 0 then zero else Listx.append zero (Listx.from_list vars) in
+ (* ACL FIXME compute arity of x correctly below! *)
+ let arity_of_x = -666 in
+ (* AC: FIXME compute arities correctly below! *)
+ let arities = Array.to_list (Array.make (n+1) 0) in
+ let p,vars = make_fresh_vars p arities in
+ (* let p,zero = make_fresh_var p in *)
+ (* let zero = Listx.Nil zero in *)
+ (* let args = if n = 0 then zero else Listx.append zero (Listx.from_list vars) in *)
+ let args = Listx.from_list (vars :> nf list) in
let bs = ref [] in
- let arity1 = (*assert false; -666*) 0 in
- let arity2 = (*assert false; -666*) 0 in
- let inst = `Lam(false,arity1,`Match(`I(0,Listx.map (lift 1) args),arity2,1,bs,[])) in
+ let inst = `Lam(false,`Match(`I((0,0),Listx.map (lift 1) args),(x,arity_of_x),1,bs,[])) in
let p = {p with deltas=bs::p.deltas} in
subst_in_problem x inst p
;;
let compute_special_k tms =
let rec aux k (t: nf) = Pervasives.max k (match t with
- | `Lam(b,_,t) -> aux (k + if b then 1 else 0) t
+ | `Lam(b,t) -> aux (k + if b then 1 else 0) t
| `I(n, tms) -> Listx.max (Listx.map (aux 0) tms)
- | `Match(t,_,liftno, bs, args) ->
+ | `Match(t, _, liftno, bs, args) ->
List.fold_left max 0 (List.map (aux 0) ((t :> nf)::args@List.map snd !bs))
| `N _ -> 0
| `Var _ -> 0
| `N n -> `N (List.nth perm n)
| `I _ -> assert false
| `Var _ as t -> t
- | `Lam(v,ar,t) -> `Lam(v, ar, aux t)
+ | `Lam(v,t) -> `Lam(v, aux t)
| `Match(_,_,_,bs,_) as t -> (bs := List.map (fun (n,t) -> (List.nth perm n, t)) !bs); t
in List.map (fun (n,t) -> (n,aux t))
in
e,Pure.lift (-n-1) (snd (List.find (fun (i,_) -> i = n) sigma)),[]
with
Not_found ->
- if should_explode && `Var n = !bomb
+ if should_explode && n = hd_of_i_var (cast_to_i_var !bomb)
then ([], (let f t = Pure.A(t,t) in f (Pure.L (f (Pure.V 0)))), [])
else ([],Pure.V n,[]))::e
in aux 0
List.iter
(fun (p,n,cmds) ->
Console.print_hline();
- bomb := `Var (-1);
+ bomb := `Var (-1,-666);
let p_finale = aux p n cmds in
let freshno,sigma = p_finale.freshno, p_finale.sigma in
prerr_endline ("------- <DONE> ------\n ");
(********************** problems *******************)
-let zero = `Var 0;;
+let zero = `Var(0,-1);;
let append_zero =
function
let ps = List.map append_zero tms in (* crea lista applicando zeri o dummies *)
let freshno = List.length var_names in
let deltas =
- let dummy = `Var (max_int / 2) in
+ let dummy = `Var (max_int / 2, -666) in
[ ref (Array.to_list (Array.init (List.length ps) (fun i -> i, dummy))) ] in
{freshno; div; conv; ps; sigma=[] ; deltas}, special_k, cmds
and i =
| I of int * nf listx
;;*)
-type 'nf i_var_ = [ `I of int * 'nf Listx.listx | `Var of int ]
+type var = int * (* arity of variable*) int;;
+type 'nf i_var_ = [ `I of var * 'nf Listx.listx | `Var of var ]
type 'nf i_n_var_ = [ `N of int | 'nf i_var_ ]
type 'nf i_num_var_ = [
| 'nf i_n_var_
- | `Match of 'nf i_num_var_ * (* arity of branches *) int * (*lift*) int * (*branches*)(int * 'nf) list ref * (*args*)'nf list
+ | `Match of 'nf i_num_var_ * (* originating var *) var * (*lift*) int * (*branches*)(int * 'nf) list ref * (*args*)'nf list
]
-type 'nf nf_ = [ `Lam of (* was_unpacked *) bool * (* arity of variable*) int * 'nf nf_ | 'nf i_num_var_ ]
+type 'nf nf_ = [ `Lam of (* was_unpacked *) bool * 'nf nf_ | 'nf i_num_var_ ]
type nf = nf nf_
type i_var = nf i_var_;;
type i_n_var = nf i_n_var_;;
let hd_of_i_var =
function
- `I (v,_)
- | `Var v -> v
+ `I ((v,_),_)
+ | `Var (v,_) -> v
let hd_of =
function
- `I (v,_)
- | `Var v -> Some v
+ `I ((v,_),_)
+ | `Var(v,_) -> Some v
| `N _ -> None
| `Match _ -> assert false
let lift m (t : nf) =
+ let aux_var l (n, ar) = (if n < l then n else n+m), ar in
let rec aux_i_num_var l =
function
- `I(n,args) -> (`I((if n < l then n else n+m),Listx.map (aux l) args) : i_num_var)
- | `Var n -> `Var (if n < l then n else n+m)
+ `I(v,args) -> `I(aux_var l v, Listx.map (aux l) args)
+ | `Var v -> `Var(aux_var l v)
| `N _ as x -> x
- | `Match(t,ar,lift,bs,args) ->
- `Match(aux_i_num_var l t, ar,lift + m, bs, List.map (aux l) args)
+ | `Match(t,v,lift,bs,args) ->
+ `Match(aux_i_num_var l t, v, lift + m, bs, List.map (aux l) args)
and aux l =
function
#i_num_var as x -> (aux_i_num_var l x :> nf)
- | `Lam(b,ar,nf) -> `Lam (b,ar,aux (l+1) nf)
+ | `Lam(b,nf) -> `Lam (b, aux (l+1) nf)
in
(aux 0 t : nf)
;;
let rec make_lams t =
function
0 -> t
- | n when n > 0 -> `Lam (false,-666,lift 1 (make_lams t (n-1)))
+ | n when n > 0 -> `Lam (false, lift 1 (make_lams t (n-1)))
| _ -> assert false
let free_vars =
let rec aux n = function
`N _ -> []
- | `Var x -> if x < n then [] else [x-n]
- | `I(x,args) ->
+ | `Var(x,_) -> if x < n then [] else [x-n]
+ | `I((x,_),args) ->
(if x < n then [] else [x-n]) @
List.concat (List.map (aux n) (Listx.to_list args))
- | `Lam(_,_,t) -> aux (n+1) t
+ | `Lam(_,t) -> aux (n+1) t
| `Match(t,_,liftno,bs,args) ->
aux n (t :> nf) @
List.concat (List.map (fun (_,t) -> aux (n-liftno) t) !bs) @
let rec t_of_i_num_var =
function
| `N n -> Scott.mk_n n
- | `Var v -> Pure.V v
+ | `Var(v,_) -> Pure.V v
| `Match(t,_,liftno,bs,args) ->
let bs = List.map (fun (n,t) -> n, t_of_nf (lift liftno t)) !bs in
let t = t_of_i_num_var t in
let m = Scott.mk_match t bs in
List.fold_left (fun acc t -> Pure.A(acc,t_of_nf t)) m args
- | `I(v, args) -> Listx.fold_left (fun acc t -> Pure.A(acc,t_of_nf t)) (Pure.V v) args
+ | `I((v,_), args) -> Listx.fold_left (fun acc t -> Pure.A(acc,t_of_nf t)) (Pure.V v) args
and t_of_nf =
function
| #i_num_var as x -> t_of_i_num_var x
- | `Lam(b,_,f) -> Pure.L (t_of_nf f)
+ | `Lam(b,f) -> Pure.L (t_of_nf f)
end
let rec print ?(l=[]) =
function
- `Var n -> print_name l n
+ `Var(n,_) -> print_name l n
| `N n -> string_of_int n
| `Match(t,_,bs_lift,bs,args) ->
"([" ^ print ~l (t :> nf) ^
" ? " ^ String.concat " | " (List.map (fun (n,t) -> string_of_int n ^ " => " ^ print ~l (lift bs_lift t)) !bs) ^ "] " ^
String.concat " " (List.map (print ~l) args) ^ ")"
- | `I(n,args) -> "(" ^ print_name l n ^ " " ^ String.concat " " (Listx.to_list (Listx.map (print ~l) args)) ^ ")"
- | `Lam(_,_,nf) ->
+ | `I((n,_),args) -> "(" ^ print_name l n ^ " " ^ String.concat " " (Listx.to_list (Listx.map (print ~l) args)) ^ ")"
+ | `Lam(_,nf) ->
let name = string_of_var (List.length l) in
"λ" ^ name ^ "." ^ print ~l:(name::l) (nf : nf)
;;
let rec string_of_term l =
let rec string_of_term_w_pars l = function
- | `Var n -> print_name l n
+ | `Var(n,_) -> print_name l n
| `N n -> string_of_int n
| `I _ as t -> "(" ^ string_of_term_no_pars_app l (t :> nf) ^ ")"
| `Lam _ as t -> "(" ^ string_of_term_no_pars_lam l t ^ ")"
" with " ^ String.concat " | " (List.map (fun (n,t) -> string_of_int n ^ " => " ^ string_of_term l (lift bs_lift t)) !bs) ^ "] " ^
String.concat " " (List.map (string_of_term l) args) ^ ")"
and string_of_term_no_pars_app l = function
- | `I(n, args) -> print_name l n ^ " " ^ String.concat " " (List.map (string_of_term_w_pars l) (Listx.to_list args))
+ | `I((n,_), args) -> print_name l n ^ " " ^ String.concat " " (List.map (string_of_term_w_pars l) (Listx.to_list args))
| #nf as t -> string_of_term_w_pars l t
and string_of_term_no_pars_lam l = function
- | `Lam(_,_,t) -> let name = string_of_var (List.length l) in
+ | `Lam(_,t) -> let name = string_of_var (List.length l) in
"λ" ^ name ^ ". " ^ (string_of_term_no_pars_lam (name::l) t)
| _ as t -> string_of_term_no_pars l t
and string_of_term_no_pars l : nf -> string = function
let rec mk_app (h : nf) (arg : nf) =
(*let res =*)
match h with
- `I(n,args) -> `I(n,Listx.append (Listx.Nil arg) args)
- | `Var n -> `I(n, Listx.Nil arg)
- | `Lam(_,_,nf) -> subst true 0 arg (nf : nf) (* AC FIXME sanity check on arity *)
- | `Match(t,ar,lift,bs,args) -> `Match(t,ar,lift,bs,List.append args [arg])
+ `I(v,args) -> `I(v,Listx.append (Listx.Nil arg) args)
+ | `Var v -> `I(v, Listx.Nil arg)
+ | `Lam(_,nf) -> subst true 0 arg (nf : nf) (* AC FIXME sanity check on arity *)
+ | `Match(t,v,lift,bs,args) -> `Match(t,v,lift,bs,List.append args [arg])
| `N _ -> assert false (* Numbers cannot be applied *)
(*in let l = ["v0";"v1";"v2"] in
prerr_endline ("mk_app h:" ^ print ~l h ^ " arg:" ^ print ~l:l arg ^ " res:" ^ print ~l:l res); res*)
and subst delift_by_one what (with_what : nf) (where : nf) =
let rec aux_i_num_var l =
function
- `I(n,args) ->
+ `I((n,ar),args) ->
if n = what + l then
mk_appx (lift l with_what) (Listx.map (aux l) args)
else
- `I ((if delift_by_one && n >= l then n-1 else n), Listx.map (aux l) args)
- | `Var n ->
+ `I (((if delift_by_one && n >= l then n-1 else n), ar), Listx.map (aux l) args)
+ | `Var(n,ar) ->
if n = what + l then
lift l with_what
else
- `Var (if delift_by_one && n >= l then n-1 else n)
+ `Var((if delift_by_one && n >= l then n-1 else n), ar)
| `N _ as x -> x
- | `Match(t,ar,bs_lift,bs,args) ->
+ | `Match(t,v,bs_lift,bs,args) ->
let bs_lift = bs_lift + if delift_by_one then -1 else 0 in
let l' = l - bs_lift in
let with_what' = lift l' with_what in
(* The following line should be the identity when delift_by_one = true because we
are assuming the ts to not contain lambda-bound variables. *)
bs := List.map (fun (n,t) -> n,subst false what with_what' t) !bs ;
- mk_match (cast_to_i_num_var (aux_i_num_var l t)) ar bs_lift bs (List.map (aux l) args)
+ mk_match (cast_to_i_num_var (aux_i_num_var l t)) v bs_lift bs (List.map (aux l) args)
and aux l(*lift*) =
(*function iii -> let res = match iii with*)
function
| #i_num_var as x -> aux_i_num_var l x
- | `Lam(b,ar,nf) -> `Lam(b,ar,aux (l+1) nf)
+ | `Lam(b, nf) -> `Lam(b, aux (l+1) nf)
(*in let ll = ["v0";"v1";"v2"] in
prerr_endline ("subst l:" ^ string_of_int l ^ " delift_by_one:" ^ string_of_bool delift_by_one ^ " what:" ^ (List.nth ll what) ^ " with_what:" ^ print ~l:ll with_what ^ " where:" ^ print ~l:ll iii ^ " res:" ^ print ~l:ll res); res*)
in
let parse' strs =
let rec aux = function
- | Parser.Lam t -> `Lam (true,-666,aux t)
+ | Parser.Lam t -> `Lam (true, aux t)
| Parser.App (t1, t2) -> mk_app (aux t1) (aux t2)
- | Parser.Var v -> `Var v
+ | Parser.Var v -> `Var(v,-666)
in let (tms, free) = Parser.parse_many strs
in (List.map aux tms, free)
;;
| _, [] -> 1
| x::xs, y::ys -> clex aux (lex aux) (x,xs) (y,ys) in
let rec aux t1 t2 = match t1, t2 with
- | `Var n , `Var m -> compare n m
- | `I(n1, l1), `I(n2, l2) ->
+ | `Var(n,_) , `Var(m,_) -> compare n m
+ | `I((n1,_), l1), `I((n2,_), l2) ->
clex compare (lex aux) (n1, Listx.to_list l1) (n2, Listx.to_list l2)
| `Lam _, `N _ -> -1
| `N _, `Lam _ -> 1
- | `Lam(_,_,t1), `Lam(_,_,t2) -> aux t1 t2
- | `Lam(_,_,t1), t2 -> - aux t1 (mk_app (lift 1 t2) (`Var 0))
- | t2, `Lam(_,_,t1) -> aux t1 (mk_app (lift 1 t2) (`Var 0))
+ | `Lam(_,t1), `Lam(_,t2) -> aux t1 t2
+ | `Lam(_,t1), t2 -> - aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
+ | t2, `Lam(_,t1) -> aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
| `N n1, `N n2 -> compare n1 n2
| `Match(u,_,bs_lift,bs,args), `Match(u',_,bs_lift',bs',args') ->
let bs = List.sort (fun (n,_) (m,_) -> compare n m) !bs in
let rec eta_subterm sub t =
if eta_eq sub t then true else
match t with
- | `Lam(_,_,t') -> eta_subterm (lift 1 sub) t'
+ | `Lam(_,t') -> eta_subterm (lift 1 sub) t'
| `Match(u,ar,liftno,bs,args) ->
eta_subterm sub (u :> nf)
|| List.exists (fun (_, t) -> eta_subterm sub (lift liftno t)) !bs
-type 'nf i_var_ = [ `I of int * 'nf Listx.listx | `Var of int ]
+type var = int * int
+type 'nf i_var_ = [ `I of var * 'nf Listx.listx | `Var of var ]
type 'nf i_n_var_ = [ `N of int | 'nf i_var_ ]
type 'nf i_num_var_ =
- [ `I of int * 'nf Listx.listx
- | `Match of 'nf i_num_var_ * int * int * (int * 'nf) list ref * 'nf list
+ [ `I of var * 'nf Listx.listx
+ | `Match of 'nf i_num_var_ * var * int * (int * 'nf) list ref * 'nf list
| `N of int
- | `Var of int ]
+ | `Var of var ]
type 'nf nf_ =
- [ `I of int * 'nf Listx.listx
- | `Lam of bool * int * 'nf nf_
- | `Match of 'nf i_num_var_ * int * int * (int * 'nf) list ref * 'nf list
+ [ `I of var * 'nf Listx.listx
+ | `Lam of bool * 'nf nf_
+ | `Match of 'nf i_num_var_ * var * int * (int * 'nf) list ref * 'nf list
| `N of int
- | `Var of int ]
+ | `Var of var ]
type nf = nf nf_
type i_var = nf i_var_
type i_n_var = nf i_n_var_
type i_num_var = nf i_num_var_
val hd_of_i_var : i_var -> int
-val hd_of :
- [< `I of 'a * 'b | `Match of 'c | `N of 'd | `Var of 'a ] -> 'a option
+val hd_of : i_n_var -> int option
(* put t under n lambdas, lifting t accordingtly *)
val make_lams : nf -> int -> nf
val lift : int -> nf -> nf
val mk_app : nf -> nf -> nf
val mk_appl : nf -> nf list -> nf
val mk_appx : nf -> nf Listx.listx -> nf
-val mk_match : nf i_num_var_ -> int -> int -> (int * nf) list ref -> nf list -> nf
+val mk_match : nf i_num_var_ -> var -> int -> (int * nf) list ref -> nf list -> nf
val subst : bool -> int -> nf -> nf -> nf
val parse' : string list -> nf list * string list
val eta_compare : nf -> nf -> int