naxiom Qdivides: Q → Q → Q.
naxiom Qle : Q → Q → Prop.
naxiom Qlt: Q → Q → Prop.
+naxiom Qmin: Q → Q → Q.
+naxiom Qmax: Q → Q → Q.
interpretation "Q plus" 'plus x y = (Qplus x y).
interpretation "Q minus" 'minus x y = (Qminus x y).
interpretation "Q times" 'times x y = (Qtimes x y).
pt_inhabited: ∃a. a ∈ pt_set;
pt_filtering: ∀a,b. a ∈ pt_set → b ∈ pt_set → ∃c. c ∈ (singleton … a) ↓ (singleton … b) → c ∈ pt_set;
pt_closed: {b | b ⋉ pt_set} ⊆ pt_set
- }.
\ No newline at end of file
+ }.
+
+ndefinition Rd ≝ Pt Rax.
+
+naxiom daemon: False.
+
+ndefinition Q_to_R: Q → Rd.
+ #q; @
+ [ napply { c | fst … c < q ∧ q < snd … c }
+ | @ [ @ (Qminus q 1) (Qplus q 1) | ncases daemon ]
+##| #c; #d; #Hc; #Hd; @ [ @ (Qmin (fst … c) (fst … d)) (Qmax (snd … c) (snd … d)) | ncases daemon]
+##| #a; #H; nlapply (ftcoreflexivity … H); /2/ ]
+nqed.
+