alias symbol "eq" = "setoid eq".
alias symbol "eq" = "setoid1 eq".
alias symbol "eq" = "setoid eq".
+alias symbol "eq" = "setoid1 eq".
nrecord partition (A: setoid) : Type[1] ≝
{ support: setoid;
- indexes: qpowerclass support;
- class: unary_morphism1 (setoid1_of_setoid support) (qpowerclass_setoid A);
+ indexes: ext_powerclass support;
+ class: unary_morphism1 (setoid1_of_setoid support) (ext_powerclass_setoid A);
inhabited: ∀i. i ∈ indexes → class i ≬ class i;
disjoint: ∀i,j. i ∈ indexes → j ∈ indexes → class i ≬ class j → i = j;
covers: big_union support ? indexes (λx.class x) = full_set A
#A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption.
nqed.
*)
+*)
ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝
λA,B:setoid.λf:carr A → carr B.λSa:Ω^A.
nqed.
ndefinition surjective ≝
- λA,B.λS: qpowerclass A.λT: qpowerclass B.λf:unary_morphism A B.
+ λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B.
∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y.
ndefinition injective ≝
- λA,B.λS: qpowerclass A.λf:unary_morphism A B.
+ λA,B.λS: ext_powerclass A.λf:unary_morphism A B.
∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'.
nlemma first_omomorphism_theorem_functions2:
#A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption.
nqed.
-nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : Type[0] ≝
+nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝
{ iso_f:> unary_morphism A B;
f_closed: ∀x. x ∈ S → iso_f x ∈ T;
f_sur: surjective … S T iso_f;
;
}.
*)
-*)
\ No newline at end of file