--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_______________________________________________________________ *)
+
+include "basics/types.ma".
+include "basics/bool.ma".
+
+(****** DeqSet: a set with a decidbale equality ******)
+
+record DeqSet : Type[1] ≝ { carr :> Type[0];
+ eqb: carr → carr → bool;
+ eqb_true: ∀x,y. (eqb x y = true) ↔ (x = y)
+}.
+
+notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }.
+interpretation "eqb" 'eqb a b = (eqb ? a b).
+
+notation "\P H" non associative with precedence 90
+ for @{(proj1 … (eqb_true ???) $H)}.
+
+notation "\b H" non associative with precedence 90
+ for @{(proj2 … (eqb_true ???) $H)}.
+
+lemma eqb_false: ∀S:DeqSet.∀a,b:S.
+ (eqb ? a b) = false ↔ a ≠ b.
+#S #a #b % #H
+ [@(not_to_not … not_eq_true_false) #H1 <H @sym_eq @(\b H1)
+ |cases (true_or_false (eqb ? a b)) // #H1 @False_ind @(absurd … (\P H1) H)
+ ]
+qed.
+
+notation "\Pf H" non associative with precedence 90
+ for @{(proj1 … (eqb_false ???) $H)}.
+
+notation "\bf H" non associative with precedence 90
+ for @{(proj2 … (eqb_false ???) $H)}.
+
+lemma dec_eq: ∀S:DeqSet.∀a,b:S. a = b ∨ a ≠ b.
+#S #a #b cases (true_or_false (eqb ? a b)) #H
+ [%1 @(\P H) | %2 @(\Pf H)]
+qed.
+
+definition beqb ≝ λb1,b2.
+ match b1 with [ true ⇒ b2 | false ⇒ notb b2].
+
+notation < "a == b" non associative with precedence 45 for @{beqb $a $b }.
+lemma beqb_true: ∀b1,b2. iff (beqb b1 b2 = true) (b1 = b2).
+#b1 #b2 cases b1 cases b2 normalize /2/
+qed.
+
+definition DeqBool ≝ mk_DeqSet bool beqb beqb_true.
+
+unification hint 0 ≔ ;
+ X ≟ mk_DeqSet bool beqb beqb_true
+(* ---------------------------------------- *) ⊢
+ bool ≡ carr X.
+
+unification hint 0 ≔ b1,b2:bool;
+ X ≟ mk_DeqSet bool beqb beqb_true
+(* ---------------------------------------- *) ⊢
+ beqb b1 b2 ≡ eqb X b1 b2.
+
+example exhint: ∀b:bool. (b == false) = true → b = false.
+#b #H @(\P H).
+qed.
+
+(* pairs *)
+definition eq_pairs ≝
+ λA,B:DeqSet.λp1,p2:A×B.(\fst p1 == \fst p2) ∧ (\snd p1 == \snd p2).
+
+lemma eq_pairs_true: ∀A,B:DeqSet.∀p1,p2:A×B.
+ eq_pairs A B p1 p2 = true ↔ p1 = p2.
+#A #B * #a1 #b1 * #a2 #b2 %
+ [#H cases (andb_true …H) #eqa #eqb >(\P eqa) >(\P eqb) //
+ |#H destruct normalize >(\b (refl … a2)) >(\b (refl … b2)) //
+ ]
+qed.
+
+definition DeqProd ≝ λA,B:DeqSet.
+ mk_DeqSet (A×B) (eq_pairs A B) (eq_pairs_true A B).
+
+unification hint 0 ≔ C1,C2;
+ T1 ≟ carr C1,
+ T2 ≟ carr C2,
+ X ≟ DeqProd C1 C2
+(* ---------------------------------------- *) ⊢
+ T1×T2 ≡ carr X.
+
+unification hint 0 ≔ T1,T2,p1,p2;
+ X ≟ DeqProd T1 T2
+(* ---------------------------------------- *) ⊢
+ eq_pairs T1 T2 p1 p2 ≡ eqb X p1 p2.
+
+example hint2: ∀b1,b2.
+ 〈b1,true〉==〈false,b2〉=true → 〈b1,true〉=〈false,b2〉.
+#b1 #b2 #H @(\P H).
\ No newline at end of file