--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
+(* ||A|| E.Tassi, S.Zacchiroli *)
+(* \ / *)
+(* \ / Matita is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/Z/dirichlet_product".
+
+include "Z/sigma_p.ma".
+include "Z/times.ma".
+
+definition dirichlet_product : (nat \to Z) \to (nat \to Z) \to nat \to Z \def
+\lambda f,g.\lambda n.
+sigma_p (S n)
+ (\lambda d.divides_b d n) (\lambda d. (f d)*(g (div n d))).
+
+(* da spostare *)
+
+theorem mod_SO: \forall n:nat. mod n (S O) = O.
+intro.
+apply sym_eq.
+apply le_n_O_to_eq.
+apply le_S_S_to_le.
+apply lt_mod_m_m.
+apply le_n.
+qed.
+theorem div_SO: \forall n:nat. div n (S O) = n.
+intro.
+rewrite > (div_mod ? (S O)) in \vdash (? ? ? %)
+ [rewrite > mod_SO.
+ rewrite < plus_n_O.
+ apply times_n_SO
+ |apply le_n
+ ]
+qed.
+
+theorem and_true: \forall a,b:bool.
+andb a b =true \to a =true \land b= true.
+intro.elim a
+ [split
+ [reflexivity|assumption]
+ |apply False_ind.
+ apply not_eq_true_false.
+ apply sym_eq.
+ assumption
+ ]
+qed.
+
+theorem lt_times_plus_times: \forall a,b,n,m:nat.
+a < n \to b < m \to a*m + b < n*m.
+intros 3.
+apply (nat_case n)
+ [intros.apply False_ind.apply (not_le_Sn_O ? H)
+ |intros.simplify.
+ rewrite < sym_plus.
+ unfold.
+ change with (S b+a*m1 \leq m1+m*m1).
+ apply le_plus
+ [assumption
+ |apply le_times
+ [apply le_S_S_to_le.assumption
+ |apply le_n
+ ]
+ ]
+ ]
+qed.
+
+theorem divides_to_divides_b_true1 : \forall n,m:nat.
+O < m \to n \divides m \to divides_b n m = true.
+intro.
+elim (le_to_or_lt_eq O n (le_O_n n))
+ [apply divides_to_divides_b_true
+ [assumption|assumption]
+ |apply False_ind.
+ rewrite < H in H2.
+ elim H2.
+ simplify in H3.
+ apply (not_le_Sn_O O).
+ rewrite > H3 in H1.
+ assumption
+ ]
+qed.
+
+theorem divides_to_div: \forall n,m.divides n m \to m/n*n = m.
+intro.
+elim (le_to_or_lt_eq O n (le_O_n n))
+ [rewrite > plus_n_O.
+ rewrite < (divides_to_mod_O ? ? H H1).
+ apply sym_eq.
+ apply div_mod.
+ assumption
+ |elim H1.
+ generalize in match H2.
+ rewrite < H.
+ simplify.
+ intro.
+ rewrite > H3.
+ reflexivity
+ ]
+qed.
+
+theorem le_div: \forall n,m. O < n \to m/n \le m.
+intros.
+rewrite > (div_mod m n) in \vdash (? ? %)
+ [apply (trans_le ? (m/n*n))
+ [rewrite > times_n_SO in \vdash (? % ?).
+ apply le_times
+ [apply le_n|assumption]
+ |apply le_plus_n_r
+ ]
+ |assumption
+ ]
+qed.
+
+theorem sigma_p2_eq:
+\forall g: nat \to nat \to Z.
+\forall h11,h12,h21,h22: nat \to nat \to nat.
+\forall n,m.
+\forall p11,p21:nat \to bool.
+\forall p12,p22:nat \to nat \to bool.
+(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to
+p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true
+\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j
+\land h11 i j < n \land h12 i j < m) \to
+(\forall i,j. i < n \to j < m \to p11 i = true \to p12 i j = true \to
+p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true
+\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j
+\land (h21 i j) < n \land (h22 i j) < m) \to
+sigma_p n p11 (\lambda x:nat .sigma_p m (p12 x) (\lambda y. g x y)) =
+sigma_p n p21 (\lambda x:nat .sigma_p m (p22 x) (\lambda y. g (h11 x y) (h12 x y))).
+intros.
+rewrite < sigma_p2'.
+rewrite < sigma_p2'.
+apply sym_eq.
+letin h := (\lambda x.(h11 (x/m) (x\mod m))*m + (h12 (x/m) (x\mod m))).
+letin h1 := (\lambda x.(h21 (x/m) (x\mod m))*m + (h22 (x/m) (x\mod m))).
+apply (trans_eq ? ?
+ (sigma_p (n*m) (\lambda x:nat.p21 (x/m)\land p22 (x/m) (x\mod m))
+ (\lambda x:nat.g ((h x)/m) ((h x)\mod m))))
+ [clear h.clear h1.
+ apply eq_sigma_p1
+ [intros.reflexivity
+ |intros.
+ cut (O < m)
+ [cut (x/m < n)
+ [cut (x \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ apply eq_f2
+ [apply sym_eq.
+ apply div_plus_times.
+ assumption
+ |auto
+ ]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? x)
+ [apply (eq_plus_to_le ? ? (x \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ ]
+ |apply (eq_sigma_p_gh ? h h1);intros
+ [cut (O < m)
+ [cut (i/m < n)
+ [cut (i \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ cut ((h11 (i/m) (i\mod m)*m+h12 (i/m) (i\mod m))/m =
+ h11 (i/m) (i\mod m))
+ [cut ((h11 (i/m) (i\mod m)*m+h12 (i/m) (i\mod m))\mod m =
+ h12 (i/m) (i\mod m))
+ [rewrite > Hcut3.
+ rewrite > Hcut4.
+ rewrite > H6.
+ rewrite > H12.
+ reflexivity
+ |apply mod_plus_times.
+ assumption
+ ]
+ |apply div_plus_times.
+ assumption
+ ]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? i)
+ [apply (eq_plus_to_le ? ? (i \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ |cut (O < m)
+ [cut (i/m < n)
+ [cut (i \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ cut ((h11 (i/m) (i\mod m)*m+h12 (i/m) (i\mod m))/m =
+ h11 (i/m) (i\mod m))
+ [cut ((h11 (i/m) (i\mod m)*m+h12 (i/m) (i\mod m))\mod m =
+ h12 (i/m) (i\mod m))
+ [rewrite > Hcut3.
+ rewrite > Hcut4.
+ rewrite > H10.
+ rewrite > H11.
+ apply sym_eq.
+ apply div_mod.
+ assumption
+ |apply mod_plus_times.
+ assumption
+ ]
+ |apply div_plus_times.
+ assumption
+ ]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? i)
+ [apply (eq_plus_to_le ? ? (i \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ |cut (O < m)
+ [cut (i/m < n)
+ [cut (i \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ apply lt_times_plus_times
+ [assumption|assumption]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? i)
+ [apply (eq_plus_to_le ? ? (i \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ |cut (O < m)
+ [cut (j/m < n)
+ [cut (j \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H1 ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ cut ((h21 (j/m) (j\mod m)*m+h22 (j/m) (j\mod m))/m =
+ h21 (j/m) (j\mod m))
+ [cut ((h21 (j/m) (j\mod m)*m+h22 (j/m) (j\mod m))\mod m =
+ h22 (j/m) (j\mod m))
+ [rewrite > Hcut3.
+ rewrite > Hcut4.
+ rewrite > H6.
+ rewrite > H12.
+ reflexivity
+ |apply mod_plus_times.
+ assumption
+ ]
+ |apply div_plus_times.
+ assumption
+ ]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? j)
+ [apply (eq_plus_to_le ? ? (j \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ |cut (O < m)
+ [cut (j/m < n)
+ [cut (j \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H1 ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ cut ((h21 (j/m) (j\mod m)*m+h22 (j/m) (j\mod m))/m =
+ h21 (j/m) (j\mod m))
+ [cut ((h21 (j/m) (j\mod m)*m+h22 (j/m) (j\mod m))\mod m =
+ h22 (j/m) (j\mod m))
+ [rewrite > Hcut3.
+ rewrite > Hcut4.
+ rewrite > H10.
+ rewrite > H11.
+ apply sym_eq.
+ apply div_mod.
+ assumption
+ |apply mod_plus_times.
+ assumption
+ ]
+ |apply div_plus_times.
+ assumption
+ ]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? j)
+ [apply (eq_plus_to_le ? ? (j \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ |cut (O < m)
+ [cut (j/m < n)
+ [cut (j \mod m < m)
+ [elim (and_true ? ? H3).
+ elim (H1 ? ? Hcut1 Hcut2 H4 H5).
+ elim H6.clear H6.
+ elim H8.clear H8.
+ elim H6.clear H6.
+ elim H8.clear H8.
+ apply (lt_times_plus_times ? ? ? m)
+ [assumption|assumption]
+ |apply lt_mod_m_m.
+ assumption
+ ]
+ |apply (lt_times_n_to_lt m)
+ [assumption
+ |apply (le_to_lt_to_lt ? j)
+ [apply (eq_plus_to_le ? ? (j \mod m)).
+ apply div_mod.
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply not_le_to_lt.unfold.intro.
+ generalize in match H2.
+ apply (le_n_O_elim ? H4).
+ rewrite < times_n_O.
+ apply le_to_not_lt.
+ apply le_O_n
+ ]
+ ]
+ ]
+qed.
+
+(* dirichlet_product is associative only up to extensional equality *)
+theorem associative_dirichlet_product:
+\forall f,g,h:nat\to Z.\forall n:nat.O < n \to
+dirichlet_product (dirichlet_product f g) h n
+ = dirichlet_product f (dirichlet_product g h) n.
+intros.
+unfold dirichlet_product.
+unfold dirichlet_product.
+apply (trans_eq ? ?
+(sigma_p (S n) (\lambda d:nat.divides_b d n)
+(\lambda d:nat
+ .sigma_p (S n) (\lambda d1:nat.divides_b d1 d) (\lambda d1:nat.f d1*g (d/d1)*h (n/d)))))
+ [apply eq_sigma_p1
+ [intros.reflexivity
+ |intros.
+ apply (trans_eq ? ?
+ (sigma_p (S x) (\lambda d1:nat.divides_b d1 x) (\lambda d1:nat.f d1*g (x/d1)*h (n/x))))
+ [apply Ztimes_sigma_pr
+ |(* hint solleva unification uncertain ?? *)
+ apply sym_eq.
+ apply false_to_eq_sigma_p
+ [assumption
+ |intros.
+ apply not_divides_to_divides_b_false
+ [apply (lt_to_le_to_lt ? (S x))
+ [apply lt_O_S|assumption]
+ |unfold Not. intro.
+ apply (lt_to_not_le ? ? H3).
+ apply divides_to_le
+ [apply (divides_b_true_to_lt_O ? ? H H2).
+ |assumption
+ ]
+ ]
+ ]
+ ]
+ ]
+ |apply (trans_eq ? ?
+ (sigma_p (S n) (\lambda d:nat.divides_b d n)
+ (\lambda d:nat
+ .sigma_p (S n) (\lambda d1:nat.divides_b d1 (n/d))
+ (\lambda d1:nat.f d*g d1*h ((n/d)/d1)))))
+ [apply (trans_eq ? ?
+ (sigma_p (S n) (\lambda d:nat.divides_b d n)
+ (\lambda d:nat
+ .sigma_p (S n) (\lambda d1:nat.divides_b d1 (n/d))
+ (\lambda d1:nat.f d*g ((times d d1)/d)*h ((n/times d d1))))))
+ [apply (sigma_p2_eq
+ (\lambda d,d1.f d1*g (d/d1)*h (n/d))
+ (\lambda d,d1:nat.times d d1)
+ (\lambda d,d1:nat.d)
+ (\lambda d,d1:nat.d1)
+ (\lambda d,d1:nat.d/d1)
+ (S n)
+ (S n)
+ ?
+ ?
+ (\lambda d,d1:nat.divides_b d1 d)
+ (\lambda d,d1:nat.divides_b d1 (n/d))
+ )
+ [intros.
+ split
+ [split
+ [split
+ [split
+ [split
+ [apply divides_to_divides_b_true1
+ [assumption
+ |apply (witness ? ? ((n/i)/j)).
+ rewrite > assoc_times.
+ rewrite > sym_times in \vdash (? ? ? (? ? %)).
+ rewrite > divides_to_div
+ [rewrite > sym_times.
+ rewrite > divides_to_div
+ [reflexivity
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply divides_to_divides_b_true
+ [apply (divides_b_true_to_lt_O ? ? H H3)
+ |apply (witness ? ? j).
+ reflexivity
+ ]
+ ]
+ |reflexivity
+ ]
+ |rewrite < sym_times.
+ rewrite > (plus_n_O (j*i)).
+ apply div_plus_times.
+ apply (divides_b_true_to_lt_O ? ? H H3)
+ ]
+ |apply (le_to_lt_to_lt ? (i*(n/i)))
+ [apply le_times
+ [apply le_n
+ |apply divides_to_le
+ [elim (le_to_or_lt_eq ? ? (le_O_n (n/i)))
+ [assumption
+ |apply False_ind.
+ apply (lt_to_not_le ? ? H).
+ rewrite < (divides_to_div i n)
+ [rewrite < H5.
+ apply le_n
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |rewrite < sym_times.
+ rewrite > divides_to_div
+ [apply le_n
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ ]
+ |assumption
+ ]
+ |intros.
+ split
+ [split
+ [split
+ [split
+ [split
+ [apply divides_to_divides_b_true1
+ [assumption
+ |apply (transitive_divides ? i)
+ [apply divides_b_true_to_divides.
+ assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply divides_to_divides_b_true
+ [apply (divides_b_true_to_lt_O i (i/j))
+ [apply (divides_b_true_to_lt_O ? ? ? H3).
+ assumption
+ |apply divides_to_divides_b_true1
+ [apply (divides_b_true_to_lt_O ? ? ? H3).
+ assumption
+ |apply (witness ? ? j).
+ apply sym_eq.
+ apply divides_to_div.
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply (witness ? ? (n/i)).
+ apply (inj_times_l1 j)
+ [apply (divides_b_true_to_lt_O ? ? ? H4).
+ apply (divides_b_true_to_lt_O ? ? ? H3).
+ assumption
+ |rewrite > divides_to_div
+ [rewrite > sym_times in \vdash (? ? ? (? % ?)).
+ rewrite > assoc_times.
+ rewrite > divides_to_div
+ [rewrite > divides_to_div
+ [reflexivity
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |apply (transitive_divides ? i)
+ [apply divides_b_true_to_divides.
+ assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ ]
+ ]
+ ]
+ |rewrite < sym_times.
+ apply divides_to_div.
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+ |reflexivity
+ ]
+ |assumption
+ ]
+ |apply (le_to_lt_to_lt ? i)
+ [apply le_div.
+ apply (divides_b_true_to_lt_O ? ? ? H4).
+ apply (divides_b_true_to_lt_O ? ? ? H3).
+ assumption
+ |assumption
+ ]
+ ]
+ ]
+ |apply eq_sigma_p1
+ [intros.reflexivity
+ |intros.
+ apply eq_sigma_p1
+ [intros.reflexivity
+ |intros.
+ apply eq_f2
+ [apply eq_f2
+ [reflexivity
+ |apply eq_f.
+ rewrite > sym_times.
+ rewrite > (plus_n_O (x1*x)).
+ apply div_plus_times.
+ apply (divides_b_true_to_lt_O ? ? ? H2).
+ assumption
+ ]
+ |apply eq_f.
+ cut (O < x)
+ [cut (O < x1)
+ [apply (inj_times_l1 (x*x1))
+ [rewrite > (times_n_O O).
+ apply lt_times;assumption
+ |rewrite > divides_to_div
+ [rewrite > sym_times in \vdash (? ? ? (? ? %)).
+ rewrite < assoc_times.
+ rewrite > divides_to_div
+ [rewrite > divides_to_div
+ [reflexivity
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |elim (divides_b_true_to_divides ? ? H4).
+ apply (witness ? ? n2).
+ rewrite > assoc_times.
+ rewrite < H5.
+ rewrite < sym_times.
+ apply sym_eq.
+ apply divides_to_div.
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply (divides_b_true_to_lt_O ? ? ? H4).
+ apply (lt_times_n_to_lt x)
+ [assumption
+ |simplify.
+ rewrite > divides_to_div
+ [assumption
+ |apply (divides_b_true_to_divides ? ? H2).
+ assumption
+ ]
+ ]
+ ]
+ |apply (divides_b_true_to_lt_O ? ? ? H2).
+ assumption
+ ]
+ ]
+ ]
+ ]
+ ]
+ |apply eq_sigma_p1
+ [intros.reflexivity
+ |intros.
+ apply (trans_eq ? ?
+ (sigma_p (S n) (\lambda d1:nat.divides_b d1 (n/x)) (\lambda d1:nat.f x*(g d1*h (n/x/d1)))))
+ [apply eq_sigma_p
+ [intros.reflexivity
+ |intros.apply assoc_Ztimes
+ ]
+ |apply (trans_eq ? ?
+ (sigma_p (S (n/x)) (\lambda d1:nat.divides_b d1 (n/x)) (\lambda d1:nat.f x*(g d1*h (n/x/d1)))))
+ [apply false_to_eq_sigma_p
+ [apply le_S_S.
+ cut (O < x)
+ [apply (le_times_to_le x)
+ [assumption
+ |rewrite > sym_times.
+ rewrite > divides_to_div
+ [apply le_times_n.
+ assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply (divides_b_true_to_lt_O ? ? ? H2).
+ assumption
+ ]
+ |intros.
+ apply not_divides_to_divides_b_false
+ [apply (trans_le ? ? ? ? H3).
+ apply le_S_S.
+ apply le_O_n
+ |unfold Not.intro.
+ apply (le_to_not_lt ? ? H3).
+ apply le_S_S.
+ apply divides_to_le
+ [apply (lt_times_n_to_lt x)
+ [apply (divides_b_true_to_lt_O ? ? ? H2).
+ assumption
+ |simplify.
+ rewrite > divides_to_div
+ [assumption
+ |apply (divides_b_true_to_divides ? ? H2).
+ assumption
+ ]
+ ]
+ |assumption
+ ]
+ ]
+ ]
+ |apply sym_eq.
+ apply Ztimes_sigma_pl
+ ]
+ ]
+ ]
+ ]
+ ]
+qed.
+
+definition is_one: nat \to Z \def
+\lambda n.
+ match n with
+ [O \Rightarrow OZ
+ | (S p) \Rightarrow
+ match p with
+ [ O \Rightarrow pos O
+ | (S q) \Rightarrow OZ]]
+.
+
+theorem is_one_OZ: \forall n. n \neq S O \to is_one n = OZ.
+intro.apply (nat_case n)
+ [intro.reflexivity
+ |intro. apply (nat_case m)
+ [intro.apply False_ind.apply H.reflexivity
+ |intros.reflexivity
+ ]
+ ]
+qed.
+
+(* da spostare in times *)
+definition Zone \def pos O.
+
+theorem Ztimes_Zone_l: \forall z:Z. Ztimes Zone z = z.
+intro.unfold Zone.simplify.
+elim z;simplify
+ [reflexivity
+ |rewrite < plus_n_O.reflexivity
+ |rewrite < plus_n_O.reflexivity
+ ]
+qed.
+
+theorem Ztimes_Zone_r: \forall z:Z. Ztimes z Zone = z.
+intro.
+rewrite < sym_Ztimes.
+apply Ztimes_Zone_l.
+qed.
+
+theorem injective_Zplus_l: \forall x:Z.injective Z Z (\lambda y.y+x).
+intro.simplify.intros (z y).
+rewrite < Zplus_z_OZ.
+rewrite < (Zplus_z_OZ y).
+rewrite < (Zplus_Zopp x).
+rewrite < (Zplus_Zopp x).
+rewrite < assoc_Zplus.
+rewrite < assoc_Zplus.
+apply eq_f2
+ [assumption|reflexivity]
+qed.
+
+theorem injective_Zplus_r: \forall x:Z.injective Z Z (\lambda y.x+y).
+intro.simplify.intros (z y).
+apply (injective_Zplus_l x).
+rewrite < sym_Zplus.
+rewrite > H.
+apply sym_Zplus.
+qed.
+
+theorem sigma_p_OZ:
+\forall p: nat \to bool.\forall n.sigma_p n p (\lambda m.OZ) = OZ.
+intros.elim n
+ [reflexivity
+ |apply (bool_elim ? (p n1));intro
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > sym_Zplus.
+ rewrite > Zplus_z_OZ.
+ assumption
+ |assumption
+ ]
+ |rewrite > false_to_sigma_p_Sn
+ [assumption
+ |assumption
+ ]
+ ]
+ ]
+qed.
+
+theorem dirichlet_product_is_one_r:
+\forall f:nat\to Z.\forall n:nat.
+ dirichlet_product f is_one n = f n.
+intros.
+elim n
+ [unfold dirichlet_product.
+ rewrite > true_to_sigma_p_Sn
+ [rewrite > Ztimes_Zone_r.
+ rewrite > Zplus_z_OZ.
+ reflexivity
+ |reflexivity
+ ]
+ |unfold dirichlet_product.
+ rewrite > true_to_sigma_p_Sn
+ [rewrite > div_n_n
+ [rewrite > Ztimes_Zone_r.
+ rewrite < Zplus_z_OZ in \vdash (? ? ? %).
+ apply eq_f2
+ [reflexivity
+ |apply (trans_eq ? ? (sigma_p (S n1)
+ (\lambda d:nat.divides_b d (S n1)) (\lambda d:nat.OZ)))
+ [apply eq_sigma_p1;intros
+ [reflexivity
+ |rewrite > is_one_OZ
+ [apply Ztimes_z_OZ
+ |unfold Not.intro.
+ apply (lt_to_not_le ? ? H1).
+ rewrite > (times_n_SO x).
+ rewrite > sym_times.
+ rewrite < H3.
+ rewrite > (div_mod ? x) in \vdash (? % ?)
+ [rewrite > divides_to_mod_O
+ [rewrite < plus_n_O.
+ apply le_n
+ |apply (divides_b_true_to_lt_O ? ? ? H2).
+ apply lt_O_S
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |apply (divides_b_true_to_lt_O ? ? ? H2).
+ apply lt_O_S
+ ]
+ ]
+ ]
+ |apply sigma_p_OZ
+ ]
+ ]
+ |apply lt_O_S
+ ]
+ |apply divides_to_divides_b_true
+ [apply lt_O_S
+ |apply divides_n_n
+ ]
+ ]
+ ]
+qed.
+
+(* da spostare *)
+theorem notb_notb: \forall b:bool. notb (notb b) = b.
+intros.
+elim b;reflexivity.
+qed.
+
+theorem injective_notb: injective bool bool notb.
+unfold injective.
+intros.
+rewrite < notb_notb.
+rewrite < (notb_notb y).
+apply eq_f.
+assumption.
+qed.
+
+theorem divides_div: \forall d,n. divides d n \to divides (n/d) n.
+intros.
+apply (witness ? ? d).
+apply sym_eq.
+apply divides_to_div.
+assumption.
+qed.
+
+theorem divides_b_div_true:
+\forall d,n. O < n \to
+ divides_b d n = true \to divides_b (n/d) n = true.
+intros.
+apply divides_to_divides_b_true1
+ [assumption
+ |apply divides_div.
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+qed.
+
+theorem div_div: \forall n,d:nat. O < n \to divides d n \to
+n/(n/d) = d.
+intros.
+apply (inj_times_l1 (n/d))
+ [apply (lt_times_n_to_lt d)
+ [apply (divides_to_lt_O ? ? H H1).
+ |rewrite > divides_to_div;assumption
+ ]
+ |rewrite > divides_to_div
+ [rewrite > sym_times.
+ rewrite > divides_to_div
+ [reflexivity
+ |assumption
+ ]
+ |apply (witness ? ? d).
+ apply sym_eq.
+ apply divides_to_div.
+ assumption
+ ]
+ ]
+qed.
+
+theorem commutative_dirichlet_product: \forall f,g:nat \to Z.\forall n. O < n \to
+dirichlet_product f g n = dirichlet_product g f n.
+intros.
+unfold dirichlet_product.
+apply (trans_eq ? ?
+ (sigma_p (S n) (\lambda d:nat.divides_b d n)
+ (\lambda d:nat.g (n/d) * f (n/(n/d)))))
+ [apply eq_sigma_p1;intros
+ [reflexivity
+ |rewrite > div_div
+ [apply sym_Ztimes.
+ |assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ |apply (eq_sigma_p_gh ? (\lambda d.(n/d)) (\lambda d.(n/d)))
+ [intros.
+ apply divides_b_div_true;assumption
+ |intros.
+ apply div_div
+ [assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |intros.
+ apply le_S_S.
+ apply le_div.
+ apply (divides_b_true_to_lt_O ? ? H H2)
+ |intros.
+ apply divides_b_div_true;assumption
+ |intros.
+ apply div_div
+ [assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |intros.
+ apply le_S_S.
+ apply le_div.
+ apply (divides_b_true_to_lt_O ? ? H H2)
+ ]
+ ]
+qed.
+
+theorem dirichlet_product_is_one_l:
+\forall f:nat\to Z.\forall n:nat.
+O < n \to dirichlet_product is_one f n = f n.
+intros.
+rewrite > commutative_dirichlet_product.
+apply dirichlet_product_is_one_r.
+assumption.
+qed.
+
+theorem dirichlet_product_one_r:
+\forall f:nat\to Z.\forall n:nat. O < n \to
+dirichlet_product f (\lambda n.Zone) n =
+sigma_p (S n) (\lambda d.divides_b d n) f.
+intros.
+unfold dirichlet_product.
+apply eq_sigma_p;intros
+ [reflexivity
+ |simplify in \vdash (? ? (? ? %) ?).
+ apply Ztimes_Zone_r
+ ]
+qed.
+
+theorem dirichlet_product_one_l:
+\forall f:nat\to Z.\forall n:nat. O < n \to
+dirichlet_product (\lambda n.Zone) f n =
+sigma_p (S n) (\lambda d.divides_b d n) f.
+intros.
+rewrite > commutative_dirichlet_product
+ [apply dirichlet_product_one_r.
+ assumption
+ |assumption
+ ]
+qed.
set "baseuri" "cic:/matita/Z/sigma_p.ma".
-include "Z/plus.ma".
+include "Z/times.ma".
include "nat/primes.ma".
include "nat/ord.ma".
]
qed.
+(* a stronger, dependent version, required e.g. for dirichlet product *)
+theorem sigma_p2' :
+\forall n,m:nat.
+\forall p1:nat \to bool.
+\forall p2:nat \to nat \to bool.
+\forall g: nat \to nat \to Z.
+sigma_p (n*m)
+ (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m)))
+ (\lambda x.g (div x m) (mod x m)) =
+sigma_p n p1
+ (\lambda x.sigma_p m (p2 x) (g x)).
+intros.
+elim n
+ [simplify.reflexivity
+ |apply (bool_elim ? (p1 n1))
+ [intro.
+ rewrite > (true_to_sigma_p_Sn ? ? ? H1).
+ simplify in \vdash (? ? (? % ? ?) ?);
+ rewrite > sigma_p_plus.
+ rewrite < H.
+ apply eq_f2
+ [apply eq_sigma_p
+ [intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity
+ |intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity.
+ ]
+ |reflexivity
+ ]
+ |intro.
+ rewrite > (false_to_sigma_p_Sn ? ? ? H1).
+ simplify in \vdash (? ? (? % ? ?) ?);
+ rewrite > sigma_p_plus.
+ rewrite > H.
+ apply (trans_eq ? ? (O+(sigma_p n1 p1 (\lambda x:nat.sigma_p m (p2 x) (g x)))))
+ [apply eq_f2
+ [rewrite > (eq_sigma_p ? (\lambda x.false) ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m)))
+ [apply sigma_p_false
+ |intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity
+ |intros.reflexivity.
+ ]
+ |reflexivity
+ ]
+ |reflexivity
+ ]
+ ]
+ ]
+qed.
+
lemma sigma_p_gi: \forall g: nat \to Z.
\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to
sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g.
]
qed.
-definition p_ord_times \def
-\lambda p,m,x.
- match p_ord x p with
- [pair q r \Rightarrow r*m+q].
-
-theorem eq_p_ord_times: \forall p,m,x.
-p_ord_times p m x = (ord_rem x p)*m+(ord x p).
-intros.unfold p_ord_times. unfold ord_rem.
-unfold ord.
-elim (p_ord x p).
-reflexivity.
-qed.
-
-theorem div_p_ord_times:
-\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p.
-intros.rewrite > eq_p_ord_times.
-apply div_plus_times.
-assumption.
-qed.
-
-theorem mod_p_ord_times:
-\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p.
-intros.rewrite > eq_p_ord_times.
-apply mod_plus_times.
-assumption.
-qed.
-
-theorem times_O_to_O: \forall n,m:nat.n*m = O \to n = O \lor m= O.
-apply nat_elim2;intros
- [left.reflexivity
- |right.reflexivity
- |apply False_ind.
- simplify in H1.
- apply (not_eq_O_S ? (sym_eq ? ? ? H1))
+(* sigma_p and Ztimes *)
+lemma Ztimes_sigma_pl: \forall z:Z.\forall n:nat.\forall p. \forall f.
+z * (sigma_p n p f) = sigma_p n p (\lambda i.z*(f i)).
+intros.
+elim n
+ [rewrite > Ztimes_z_OZ.reflexivity
+ |apply (bool_elim ? (p n1)); intro
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite < H.
+ apply distr_Ztimes_Zplus
+ |assumption
+ ]
+ |assumption
+ ]
+ |rewrite > false_to_sigma_p_Sn
+ [rewrite > false_to_sigma_p_Sn
+ [assumption
+ |assumption
+ ]
+ |assumption
+ ]
+ ]
]
qed.
-theorem prime_to_lt_O: \forall p. prime p \to O < p.
-intros.elim H.apply lt_to_le.assumption.
+lemma Ztimes_sigma_pr: \forall z:Z.\forall n:nat.\forall p. \forall f.
+(sigma_p n p f) * z = sigma_p n p (\lambda i.(f i)*z).
+intros.
+rewrite < sym_Ztimes.
+rewrite > Ztimes_sigma_pl.
+apply eq_sigma_p
+ [intros.reflexivity
+ |intros.apply sym_Ztimes
+ ]
qed.
theorem divides_exp_to_lt_ord:\forall n,m,j,p. O < n \to prime p \to
(sigma_p (S n*S m) (\lambda x:nat.divides_b (x/S m) n)
(\lambda x:nat.g (x/S m*(p)\sup(x\mod S m)))))
[apply sym_eq.
- apply (eq_sigma_p_gh g ? (p_ord_times p (S m)))
+ apply (eq_sigma_p_gh g ? (p_ord_inv p (S m)))
[intros.
lapply (divides_b_true_to_lt_O ? ? H H4).
apply divides_to_divides_b_true
]
|intros.
lapply (divides_b_true_to_lt_O ? ? H H4).
- unfold p_ord_times.
+ unfold p_ord_inv.
rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m))
[change with ((i/S m)*S m+i \mod S m=i).
apply sym_eq.
]
|intros.
cut (ord j p < S m)
- [rewrite > div_p_ord_times
+ [rewrite > div_p_ord_inv
[apply divides_to_divides_b_true
[apply lt_O_ord_rem
[elim H1.assumption
]
|intros.
cut (ord j p < S m)
- [rewrite > div_p_ord_times
- [rewrite > mod_p_ord_times
+ [rewrite > div_p_ord_inv
+ [rewrite > mod_p_ord_inv
[rewrite > sym_times.
apply sym_eq.
apply exp_ord
apply (divides_b_true_to_lt_O ? ? H4).
]
|intros.
- rewrite > eq_p_ord_times.
+ rewrite > eq_p_ord_inv.
rewrite > sym_plus.
apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m))
[apply lt_plus_l.