>Hp1 >(mod_plus_times …) /2 by refl, monotonic_lt_minus_l, eq_f/
|>bigop_Sfalse // >Hind >(pad_bigop (S n*k2)) // @same_bigop
#i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2 by plus_minus/
- #eqi >eqi in ⊢ (???%); >div_plus_times /2 by refl, monotonic_lt_minus_l, trans_eq/
+ #eqi >eqi in ⊢ (???%); >div_plus_times
+ /2 by refl, monotonic_lt_minus_l, trans_eq/
]
qed.
definition congruent ≝ λn,m,p:nat. mod n p = mod m p.
+notation "hvbox(n break ≅_{p} m)"
+ non associative with precedence 45
+for @{ 'congruent $n $m $p }.
+
interpretation "congruent" 'congruent n m p = (congruent n m p).
theorem congruent_n_n: ∀n,p:nat.congruent n n p.