interpretation "natural times" 'times x y = (cic:/matita/nat/times/times.con x y).
+theorem times_Sn_m:
+\forall n,m:nat. m+n*m = S n*m.
+intros. reflexivity.
+qed.
+
theorem times_n_O: \forall n:nat. O = n*O.
intros.elim n.
simplify.reflexivity.
unfold symmetric.
intros.elim x.
simplify.apply times_n_O.
+(* applyS times_n_Sm. *)
simplify.rewrite > H.apply times_n_Sm.
qed.
\def distributive_times_plus.
theorem associative_times: associative nat times.
-unfold associative.intros.
-elim x.simplify.apply refl_eq.
+unfold associative.
+intros.
+elim x. simplify.apply refl_eq.
simplify.rewrite < sym_times.
rewrite > distr_times_plus.
rewrite < sym_times.
variant assoc_times: \forall n,m,p:nat. (n*m)*p = n*(m*p) \def
associative_times.
+
+lemma times_times: ∀x,y,z. x*(y*z) = y*(x*z).
+intros.autobatch paramodulation.
+qed.
+