definition rebase_spec ≝
∀l1,l2:q_f.∃p:q_f × q_f.
And4
- (*len (bars (\fst p)) = len (bars (\snd p))*)
(start (\fst p) = start (\snd p))
- (same_bases (\fst p) (\snd p))
+ (same_bases (bars (\fst p)) (bars (\snd p)))
(same_values l1 (\fst p))
(same_values l2 (\snd p)).
definition rebase_spec_simpl ≝
λstart.λl1,l2:list bar.λp:(list bar) × (list bar).
And3
- (same_bases (mk_q_f start (\fst p)) (mk_q_f start (\snd p)))
+ (same_bases (\fst p) (\snd p))
(same_values (mk_q_f start l1) (mk_q_f start (\fst p)))
(same_values (mk_q_f start l2) (mk_q_f start (\snd p))).
coercion eject.
definition inject ≝ λP.λp:(list bar) × (list bar).λh:P p. ex_introT ? P p h.
coercion inject with 0 1 nocomposites.
+
+axiom devil : False.
definition rebase: rebase_spec.
intros 2 (f1 f2); cases f1 (s1 l1); cases f2 (s2 l2); clear f1 f2;
[1,2: assumption;
|3: intro; apply (H3 input);
|4: intro; rewrite > H in H4;
- rewrite > (H4 input); reflexivity;]
+ rewrite > (H4 input) in ⊢ (? ? % ?); reflexivity;]
|2: letin l2' ≝ (〈\fst (unpos (s2-s1) ?),OQ〉::l2);[
apply q_lt_minus; rewrite > q_plus_sym; rewrite > q_plus_OQ;
assumption]
[1: reflexivity
|2: assumption;
|3: assumption;
- |4: intro; rewrite > (initial_shift_same_values (mk_q_f s2 l2) s1 H input);
- rewrite < (H4 input); reflexivity;]
+ |4: intro;
+ rewrite > (initial_shift_same_values (mk_q_f s2 l2) s1 H input) in ⊢ (? ? % ?);
+ rewrite < (H4 input)in ⊢ (? ? ? %); reflexivity;]
|3: letin l1' ≝ (〈\fst (unpos (s1-s2) ?),OQ〉::l1);[
apply q_lt_minus; rewrite > q_plus_sym; rewrite > q_plus_OQ;
assumption]
[1: reflexivity
|2: assumption;
|4: assumption;
- |3: intro; rewrite > (initial_shift_same_values (mk_q_f s1 l1) s2 H input);
- rewrite < (H3 input); reflexivity;]]
+ |3: intro; simplify in ⊢ (? ? ? (? ? ? (? ? ? (? % ?))));
+ rewrite > (initial_shift_same_values (mk_q_f s1 l1) s2 H input) in ⊢ (? ? % ?);
+ rewrite < (H3 input) in ⊢ (? ? ? %); reflexivity;]]
|1,2: unfold rest; apply q_lt_minus; rewrite > q_plus_sym; rewrite > q_plus_OQ;
assumption;
|8: intros; cases (?:False); apply (not_le_Sn_O ? H1);
cases (H4 s K); clear K H4; intro input; cases input; [reflexivity]
simplify; apply H7;
|2: simplify in ⊢ (? ? %); cases (H4 s K); clear H4 K H5 spec;
- intro;
+ intro;
(* input < s + b1 || input >= s + b1 *)
|3: simplify in ⊢ (? ? %);]
|4: intros; generalize in match (unpos ??); intro X; cases X; clear X;
|5: intros; (* triviale, caso in cui non fa nulla *)
|6,7: (* casi base in cui allunga la lista più corta *)
]
+elim devil;
qed.
+
+include "Q/q/qtimes.ma".
+
+let rec area (l:list bar) on l ≝
+ match l with
+ [ nil ⇒ OQ
+ | cons he tl ⇒ area tl + Qpos (\fst he) * ⅆ[OQ,\snd he]].
+
+alias symbol "pi1" = "exT \fst".
+alias symbol "minus" = "Q minus".
+alias symbol "exists" = "CProp exists".
+definition minus_spec_bar ≝
+ λf,g,h:list bar.
+ same_bases f g → len f = len g →
+ ∀s,i:ℚ. \snd (\fst (value (mk_q_f s h) i)) =
+ \snd (\fst (value (mk_q_f s f) i)) - \snd (\fst (value (mk_q_f s g) i)).
+
+definition minus_spec ≝
+ λf,g:q_f.
+ ∃h:q_f.
+ ∀i:ℚ. \snd (\fst (value h i)) =
+ \snd (\fst (value f i)) - \snd (\fst (value g i)).
+
+definition eject_bar : ∀P:list bar → CProp.(∃l:list bar.P l) → list bar ≝
+ λP.λp.match p with [ex_introT x _ ⇒ x].
+definition inject_bar ≝ ex_introT (list bar).
+
+coercion inject_bar with 0 1 nocomposites.
+coercion eject_bar with 0 0 nocomposites.
+
+lemma minus_q_f : ∀f,g. minus_spec f g.
+intros;
+letin aux ≝ (
+ let rec aux (l1, l2 : list bar) on l1 ≝
+ match l1 with
+ [ nil ⇒ []
+ | cons he1 tl1 ⇒
+ match l2 with
+ [ nil ⇒ []
+ | cons he2 tl2 ⇒ 〈\fst he1, \snd he1 - \snd he2〉 :: aux tl1 tl2]]
+ in aux : ∀l1,l2 : list bar.∃h.minus_spec_bar l1 l2 h);
+[2: intros 4; simplify in H3; destruct H3;
+|3: intros 4; simplify in H3; cases l1 in H2; [2: intro X; simplify in X; destruct X]
+ intros; rewrite > (value_OQ_e (mk_q_f s []) i); [2: reflexivity]
+ rewrite > q_elim_minus; rewrite > q_plus_OQ; reflexivity;
+|1: cases (aux l2 l3); unfold in H2; intros 4;
+ simplify in ⊢ (? ? (? ? ? (? ? ? (? % ?))) ?);
+ cases (q_cmp i (s + Qpos (\fst b)));
+
+
+
+definition excess ≝
+ λf,g.∃i.\snd (\fst (value f i)) < \snd (\fst (value g i)).
+