--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* GENERAL NOTATION USED BY THE FORMAL SYSTEM λδ ****************************)
+
+notation "ππ"
+ non associative with precedence 55
+ for @{ 'OneZero }.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* GENERAL NOTATION USED BY THE FORMAL SYSTEM λδ ****************************)
+
+notation "hvbox ( β© term 46 x1, break term 46 x2 , break term 46 x3, break term 46 x4 βͺ )"
+ non associative with precedence 55
+ for @{ 'Tuple $x1 $x2 $x3 $x4 }.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* GENERAL NOTATION USED BY THE FORMAL SYSTEM λδ ****************************)
+
+notation "ππ"
+ non associative with precedence 55
+ for @{ 'ZeroOne }.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* GENERAL NOTATION USED BY THE FORMAL SYSTEM λδ ****************************)
+
+notation "ππ"
+ non associative with precedence 55
+ for @{ 'ZeroZero }.
(* This file was generated by xoa.native: do not edit *********************)
-(* multiple inductive existental quantifier (1, 2) *)
+(* multiple existental quantifier (1, 2) *)
notation > "hvbox(ββ ident x0 , ident x1 break . term 19 P0)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P0) }.
-(* multiple inductive existental quantifier (1, 3) *)
+(* multiple existental quantifier (1, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) }.
-(* multiple inductive existental quantifier (2, 2) *)
+(* multiple existental quantifier (2, 2) *)
notation > "hvbox(ββ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P1) }.
-(* multiple inductive existental quantifier (2, 3) *)
+(* multiple existental quantifier (2, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) }.
-(* multiple inductive existental quantifier (3, 1) *)
+(* multiple existental quantifier (3, 1) *)
notation > "hvbox(ββ ident x0 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.$P0) (Ξ»${ident x0}:$T0.$P1) (Ξ»${ident x0}:$T0.$P2) }.
-(* multiple inductive existental quantifier (3, 2) *)
+(* multiple existental quantifier (3, 2) *)
notation > "hvbox(ββ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P2) }.
-(* multiple inductive existental quantifier (3, 3) *)
+(* multiple existental quantifier (3, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P2) }.
-(* multiple inductive existental quantifier (3, 4) *)
+(* multiple existental quantifier (3, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) }.
-(* multiple inductive existental quantifier (3, 5) *)
+(* multiple existental quantifier (3, 5) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P2) }.
-(* multiple inductive existental quantifier (4, 1) *)
+(* multiple existental quantifier (4, 1) *)
notation > "hvbox(ββ ident x0 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.$P0) (Ξ»${ident x0}:$T0.$P1) (Ξ»${ident x0}:$T0.$P2) (Ξ»${ident x0}:$T0.$P3) }.
-(* multiple inductive existental quantifier (4, 2) *)
+(* multiple existental quantifier (4, 2) *)
notation > "hvbox(ββ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P3) }.
-(* multiple inductive existental quantifier (4, 3) *)
+(* multiple existental quantifier (4, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P3) }.
-(* multiple inductive existental quantifier (4, 4) *)
+(* multiple existental quantifier (4, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P3) }.
-(* multiple inductive existental quantifier (4, 5) *)
+(* multiple existental quantifier (4, 5) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P3) }.
-(* multiple inductive existental quantifier (5, 2) *)
+(* multiple existental quantifier (5, 2) *)
notation > "hvbox(ββ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.$P4) }.
-(* multiple inductive existental quantifier (5, 3) *)
+(* multiple existental quantifier (5, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P4) }.
-(* multiple inductive existental quantifier (5, 4) *)
+(* multiple existental quantifier (5, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P4) }.
-(* multiple inductive existental quantifier (5, 5) *)
+(* multiple existental quantifier (5, 5) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P4) }.
-(* multiple inductive existental quantifier (5, 6) *)
+(* multiple existental quantifier (5, 6) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P4) }.
-(* multiple inductive existental quantifier (6, 3) *)
+(* multiple existental quantifier (6, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P5) }.
-(* multiple inductive existental quantifier (6, 4) *)
+(* multiple existental quantifier (6, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P5) }.
-(* multiple inductive existental quantifier (6, 5) *)
+(* multiple existental quantifier (6, 5) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.$P5) }.
-(* multiple inductive existental quantifier (6, 6) *)
+(* multiple existental quantifier (6, 6) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.$P5) }.
-(* multiple inductive existental quantifier (6, 7) *)
+(* multiple existental quantifier (6, 7) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 , ident x6 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P5) }.
-(* multiple inductive existental quantifier (7, 3) *)
+(* multiple existental quantifier (7, 3) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P5) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.$P6) }.
-(* multiple inductive existental quantifier (7, 4) *)
+(* multiple existental quantifier (7, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P5) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P6) }.
-(* multiple inductive existental quantifier (7, 7) *)
+(* multiple existental quantifier (7, 7) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 , ident x6 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P5) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.Ξ»${ident x4}:$T4.Ξ»${ident x5}:$T5.Ξ»${ident x6}:$T6.$P6) }.
-(* multiple inductive existental quantifier (8, 4) *)
+(* multiple existental quantifier (8, 4) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6 break & term 19 P7)"
non associative with precedence 20
non associative with precedence 20
for @{ 'Ex (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P0) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P1) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P2) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P3) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P4) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P5) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P6) (Ξ»${ident x0}:$T0.Ξ»${ident x1}:$T1.Ξ»${ident x2}:$T2.Ξ»${ident x3}:$T3.$P7) }.
-(* multiple inductive existental quantifier (8, 5) *)
+(* multiple existental quantifier (8, 5) *)
notation > "hvbox(ββ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6 break & term 19 P7)"
non associative with precedence 20
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "ground_2/notation/constructors/tuple_4.ma".
+include "ground_2/notation/constructors/zerozero_0.ma".
+include "ground_2/notation/constructors/zeroone_0.ma".
+include "ground_2/notation/constructors/onezero_0.ma".
+include "ground_2/lib/arith.ma".
+
+(* RT-TRANSITION COUNTER ****************************************************)
+
+record rtc: Type[0] β {
+ ri: nat; (* Note: inner r-steps *)
+ rh: nat; (* Note: head r-steps *)
+ ti: nat; (* Note: inner t-steps *)
+ th: nat (* Note: head t-steps *)
+}.
+
+interpretation "constructor (rtc)"
+ 'Tuple ri rh ti th = (mk_rtc ri rh ti th).
+
+(* Note: for one structural step *)
+definition OO: rtc β β©0, 0, 0, 0βͺ.
+
+interpretation "one structural step (rtc)"
+ 'ZeroZero = (OO).
+
+(* Note: for one r-step *)
+definition UO: rtc β β©0, 1, 0, 0βͺ.
+
+interpretation "one r-step (rtc)"
+ 'OneZero = (UO).
+
+(* Note: for one t-step *)
+definition OU: rtc β β©0, 0, 0, 1βͺ.
+
+interpretation "one t-step (rtc)"
+ 'ZeroOne = (OU).
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "ground_2/steps/rtc.ma".
+
+(* RT-TRANSITION COUNTER ****************************************************)
+
+definition plus (r1:rtc) (r2:rtc): rtc β match r1 with [
+ mk_rtc ri1 rh1 ti1 th1 β match r2 with [
+ mk_rtc ri2 rh2 ti2 th2 β β©ri1+ri2, rh1+rh2, ti1+ti2, th1+th2βͺ
+ ]
+].
+
+interpretation "plus (rtc)"
+ 'plus r1 r2 = (plus r1 r2).
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "ground_2/notation/functions/drop_1.ma".
+include "ground_2/steps/rtc.ma".
+
+(* RT-TRANSITION COUNTER ****************************************************)
+
+definition shift (r:rtc): rtc β match r with
+[ mk_rtc ri rh ti th β β©ri+rh, 0, ti+th, 0βͺ ].
+
+interpretation "shift (rtc)"
+ 'Drop r = (shift r).
and its timeline.
</body>
<table name="ground_2_sum"/>
+ <news class="alpha" date="2016 April 18.">
+ Generic rt-transition counter (rtc).
+ </news>
<news class="alpha" date="2016 March 4.">
Platform-independent multiple relocation (rtmap).
</news>
]
}
]
- class "green"
- [ { "natural numbers with infinity" * } {
+ class "water"
+ [ { "rt-transition counter" * } {
[ { "" * } {
- [ "ynat ( β )" "ynat_pred ( β«°? )" "ynat_succ ( β«―? )"
- "ynat_le ( ? β€ ? )" "ynat_lt ( ? < ? )"
- "ynat_plus ( ? + ? )" *
- ]
+ [ "rtc ( β©?,?,?,?βͺ ) ( ππ ) ( ππ ) ( ππ )" "rtc_shift ( β? )" "rtc_plus ( ? + ? )" * ]
}
]
}
]
- class "grass"
+ class "green"
[ { "multiple relocation" * } {
[ { "" * } {
[ "rtmap" "rtmap_eq ( ? β ? )" "rtmap_tl ( β«±? )" "rtmap_tls ( β«±*[?]? )" "rtmap_isid ( πβ¦?β¦ )" "rtmap_id" "rtmap_fcla ( πβ¦?β¦ β‘ ? )" "rtmap_isfin ( π
β¦?β¦ )" "rtmap_isuni ( πβ¦?β¦ )" "rtmap_uni ( πβ΄?β΅ )" "rtmap_sle ( ? β ? )" "rtmap_sand ( ? β ? β‘ ? )" "rtmap_sor ( ? β ? β‘ ? )" "rtmap_at ( @β¦?,?β¦ β‘ ? )" "rtmap_istot ( πβ¦?β¦ )" "rtmap_after ( ? β ? β‘ ? )" * ]
]
}
]
+ class "grass"
+ [ { "natural numbers with infinity" * } {
+ [ { "" * } {
+ [ "ynat ( β )" "ynat_pred ( β«°? )" "ynat_succ ( β«―? )"
+ "ynat_le ( ? β€ ? )" "ynat_lt ( ? < ? )"
+ "ynat_plus ( ? + ? )" *
+ ]
+ }
+ ]
+ }
+ ]
class "yellow"
[ { "extensions to the library" * } {
[ { "" * } {
include "ground_2/notation/xoa_notation.ma".
-(* multiple inductive existental quantifier (1, 2) *)
+(* multiple existental quantifier (1, 2) *)
inductive ex1_2 (A0,A1:Type[0]) (P0:A0βA1βProp) : Prop β
| ex1_2_intro: βx0,x1. P0 x0 x1 β ex1_2 ? ? ?
.
-interpretation "multiple inductive existental quantifier (1, 2)" 'Ex P0 = (ex1_2 ? ? P0).
+interpretation "multiple existental quantifier (1, 2)" 'Ex P0 = (ex1_2 ? ? P0).
-(* multiple inductive existental quantifier (1, 3) *)
+(* multiple existental quantifier (1, 3) *)
inductive ex1_3 (A0,A1,A2:Type[0]) (P0:A0βA1βA2βProp) : Prop β
| ex1_3_intro: βx0,x1,x2. P0 x0 x1 x2 β ex1_3 ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (1, 3)" 'Ex P0 = (ex1_3 ? ? ? P0).
+interpretation "multiple existental quantifier (1, 3)" 'Ex P0 = (ex1_3 ? ? ? P0).
-(* multiple inductive existental quantifier (2, 2) *)
+(* multiple existental quantifier (2, 2) *)
inductive ex2_2 (A0,A1:Type[0]) (P0,P1:A0βA1βProp) : Prop β
| ex2_2_intro: βx0,x1. P0 x0 x1 β P1 x0 x1 β ex2_2 ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (2, 2)" 'Ex P0 P1 = (ex2_2 ? ? P0 P1).
+interpretation "multiple existental quantifier (2, 2)" 'Ex P0 P1 = (ex2_2 ? ? P0 P1).
-(* multiple inductive existental quantifier (2, 3) *)
+(* multiple existental quantifier (2, 3) *)
inductive ex2_3 (A0,A1,A2:Type[0]) (P0,P1:A0βA1βA2βProp) : Prop β
| ex2_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β ex2_3 ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (2, 3)" 'Ex P0 P1 = (ex2_3 ? ? ? P0 P1).
+interpretation "multiple existental quantifier (2, 3)" 'Ex P0 P1 = (ex2_3 ? ? ? P0 P1).
-(* multiple inductive existental quantifier (3, 1) *)
+(* multiple existental quantifier (3, 1) *)
inductive ex3 (A0:Type[0]) (P0,P1,P2:A0βProp) : Prop β
| ex3_intro: βx0. P0 x0 β P1 x0 β P2 x0 β ex3 ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (3, 1)" 'Ex P0 P1 P2 = (ex3 ? P0 P1 P2).
+interpretation "multiple existental quantifier (3, 1)" 'Ex P0 P1 P2 = (ex3 ? P0 P1 P2).
-(* multiple inductive existental quantifier (3, 2) *)
+(* multiple existental quantifier (3, 2) *)
inductive ex3_2 (A0,A1:Type[0]) (P0,P1,P2:A0βA1βProp) : Prop β
| ex3_2_intro: βx0,x1. P0 x0 x1 β P1 x0 x1 β P2 x0 x1 β ex3_2 ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (3, 2)" 'Ex P0 P1 P2 = (ex3_2 ? ? P0 P1 P2).
+interpretation "multiple existental quantifier (3, 2)" 'Ex P0 P1 P2 = (ex3_2 ? ? P0 P1 P2).
-(* multiple inductive existental quantifier (3, 3) *)
+(* multiple existental quantifier (3, 3) *)
inductive ex3_3 (A0,A1,A2:Type[0]) (P0,P1,P2:A0βA1βA2βProp) : Prop β
| ex3_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β P2 x0 x1 x2 β ex3_3 ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (3, 3)" 'Ex P0 P1 P2 = (ex3_3 ? ? ? P0 P1 P2).
+interpretation "multiple existental quantifier (3, 3)" 'Ex P0 P1 P2 = (ex3_3 ? ? ? P0 P1 P2).
-(* multiple inductive existental quantifier (3, 4) *)
+(* multiple existental quantifier (3, 4) *)
inductive ex3_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2:A0βA1βA2βA3βProp) : Prop β
| ex3_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β ex3_4 ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (3, 4)" 'Ex P0 P1 P2 = (ex3_4 ? ? ? ? P0 P1 P2).
+interpretation "multiple existental quantifier (3, 4)" 'Ex P0 P1 P2 = (ex3_4 ? ? ? ? P0 P1 P2).
-(* multiple inductive existental quantifier (3, 5) *)
+(* multiple existental quantifier (3, 5) *)
inductive ex3_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2:A0βA1βA2βA3βA4βProp) : Prop β
| ex3_5_intro: βx0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 β P1 x0 x1 x2 x3 x4 β P2 x0 x1 x2 x3 x4 β ex3_5 ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (3, 5)" 'Ex P0 P1 P2 = (ex3_5 ? ? ? ? ? P0 P1 P2).
+interpretation "multiple existental quantifier (3, 5)" 'Ex P0 P1 P2 = (ex3_5 ? ? ? ? ? P0 P1 P2).
-(* multiple inductive existental quantifier (4, 1) *)
+(* multiple existental quantifier (4, 1) *)
inductive ex4 (A0:Type[0]) (P0,P1,P2,P3:A0βProp) : Prop β
| ex4_intro: βx0. P0 x0 β P1 x0 β P2 x0 β P3 x0 β ex4 ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (4, 1)" 'Ex P0 P1 P2 P3 = (ex4 ? P0 P1 P2 P3).
+interpretation "multiple existental quantifier (4, 1)" 'Ex P0 P1 P2 P3 = (ex4 ? P0 P1 P2 P3).
-(* multiple inductive existental quantifier (4, 2) *)
+(* multiple existental quantifier (4, 2) *)
inductive ex4_2 (A0,A1:Type[0]) (P0,P1,P2,P3:A0βA1βProp) : Prop β
| ex4_2_intro: βx0,x1. P0 x0 x1 β P1 x0 x1 β P2 x0 x1 β P3 x0 x1 β ex4_2 ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (4, 2)" 'Ex P0 P1 P2 P3 = (ex4_2 ? ? P0 P1 P2 P3).
+interpretation "multiple existental quantifier (4, 2)" 'Ex P0 P1 P2 P3 = (ex4_2 ? ? P0 P1 P2 P3).
-(* multiple inductive existental quantifier (4, 3) *)
+(* multiple existental quantifier (4, 3) *)
inductive ex4_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3:A0βA1βA2βProp) : Prop β
| ex4_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β P2 x0 x1 x2 β P3 x0 x1 x2 β ex4_3 ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (4, 3)" 'Ex P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3).
+interpretation "multiple existental quantifier (4, 3)" 'Ex P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3).
-(* multiple inductive existental quantifier (4, 4) *)
+(* multiple existental quantifier (4, 4) *)
inductive ex4_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3:A0βA1βA2βA3βProp) : Prop β
| ex4_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β P3 x0 x1 x2 x3 β ex4_4 ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (4, 4)" 'Ex P0 P1 P2 P3 = (ex4_4 ? ? ? ? P0 P1 P2 P3).
+interpretation "multiple existental quantifier (4, 4)" 'Ex P0 P1 P2 P3 = (ex4_4 ? ? ? ? P0 P1 P2 P3).
-(* multiple inductive existental quantifier (4, 5) *)
+(* multiple existental quantifier (4, 5) *)
inductive ex4_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3:A0βA1βA2βA3βA4βProp) : Prop β
| ex4_5_intro: βx0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 β P1 x0 x1 x2 x3 x4 β P2 x0 x1 x2 x3 x4 β P3 x0 x1 x2 x3 x4 β ex4_5 ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (4, 5)" 'Ex P0 P1 P2 P3 = (ex4_5 ? ? ? ? ? P0 P1 P2 P3).
+interpretation "multiple existental quantifier (4, 5)" 'Ex P0 P1 P2 P3 = (ex4_5 ? ? ? ? ? P0 P1 P2 P3).
-(* multiple inductive existental quantifier (5, 2) *)
+(* multiple existental quantifier (5, 2) *)
inductive ex5_2 (A0,A1:Type[0]) (P0,P1,P2,P3,P4:A0βA1βProp) : Prop β
| ex5_2_intro: βx0,x1. P0 x0 x1 β P1 x0 x1 β P2 x0 x1 β P3 x0 x1 β P4 x0 x1 β ex5_2 ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (5, 2)" 'Ex P0 P1 P2 P3 P4 = (ex5_2 ? ? P0 P1 P2 P3 P4).
+interpretation "multiple existental quantifier (5, 2)" 'Ex P0 P1 P2 P3 P4 = (ex5_2 ? ? P0 P1 P2 P3 P4).
-(* multiple inductive existental quantifier (5, 3) *)
+(* multiple existental quantifier (5, 3) *)
inductive ex5_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4:A0βA1βA2βProp) : Prop β
| ex5_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β P2 x0 x1 x2 β P3 x0 x1 x2 β P4 x0 x1 x2 β ex5_3 ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (5, 3)" 'Ex P0 P1 P2 P3 P4 = (ex5_3 ? ? ? P0 P1 P2 P3 P4).
+interpretation "multiple existental quantifier (5, 3)" 'Ex P0 P1 P2 P3 P4 = (ex5_3 ? ? ? P0 P1 P2 P3 P4).
-(* multiple inductive existental quantifier (5, 4) *)
+(* multiple existental quantifier (5, 4) *)
inductive ex5_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4:A0βA1βA2βA3βProp) : Prop β
| ex5_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β P3 x0 x1 x2 x3 β P4 x0 x1 x2 x3 β ex5_4 ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (5, 4)" 'Ex P0 P1 P2 P3 P4 = (ex5_4 ? ? ? ? P0 P1 P2 P3 P4).
+interpretation "multiple existental quantifier (5, 4)" 'Ex P0 P1 P2 P3 P4 = (ex5_4 ? ? ? ? P0 P1 P2 P3 P4).
-(* multiple inductive existental quantifier (5, 5) *)
+(* multiple existental quantifier (5, 5) *)
inductive ex5_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4:A0βA1βA2βA3βA4βProp) : Prop β
| ex5_5_intro: βx0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 β P1 x0 x1 x2 x3 x4 β P2 x0 x1 x2 x3 x4 β P3 x0 x1 x2 x3 x4 β P4 x0 x1 x2 x3 x4 β ex5_5 ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (5, 5)" 'Ex P0 P1 P2 P3 P4 = (ex5_5 ? ? ? ? ? P0 P1 P2 P3 P4).
+interpretation "multiple existental quantifier (5, 5)" 'Ex P0 P1 P2 P3 P4 = (ex5_5 ? ? ? ? ? P0 P1 P2 P3 P4).
-(* multiple inductive existental quantifier (5, 6) *)
+(* multiple existental quantifier (5, 6) *)
inductive ex5_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4:A0βA1βA2βA3βA4βA5βProp) : Prop β
| ex5_6_intro: βx0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 β P1 x0 x1 x2 x3 x4 x5 β P2 x0 x1 x2 x3 x4 x5 β P3 x0 x1 x2 x3 x4 x5 β P4 x0 x1 x2 x3 x4 x5 β ex5_6 ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (5, 6)" 'Ex P0 P1 P2 P3 P4 = (ex5_6 ? ? ? ? ? ? P0 P1 P2 P3 P4).
+interpretation "multiple existental quantifier (5, 6)" 'Ex P0 P1 P2 P3 P4 = (ex5_6 ? ? ? ? ? ? P0 P1 P2 P3 P4).
-(* multiple inductive existental quantifier (6, 3) *)
+(* multiple existental quantifier (6, 3) *)
inductive ex6_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4,P5:A0βA1βA2βProp) : Prop β
| ex6_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β P2 x0 x1 x2 β P3 x0 x1 x2 β P4 x0 x1 x2 β P5 x0 x1 x2 β ex6_3 ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (6, 3)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_3 ? ? ? P0 P1 P2 P3 P4 P5).
+interpretation "multiple existental quantifier (6, 3)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_3 ? ? ? P0 P1 P2 P3 P4 P5).
-(* multiple inductive existental quantifier (6, 4) *)
+(* multiple existental quantifier (6, 4) *)
inductive ex6_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5:A0βA1βA2βA3βProp) : Prop β
| ex6_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β P3 x0 x1 x2 x3 β P4 x0 x1 x2 x3 β P5 x0 x1 x2 x3 β ex6_4 ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (6, 4)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_4 ? ? ? ? P0 P1 P2 P3 P4 P5).
+interpretation "multiple existental quantifier (6, 4)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_4 ? ? ? ? P0 P1 P2 P3 P4 P5).
-(* multiple inductive existental quantifier (6, 5) *)
+(* multiple existental quantifier (6, 5) *)
inductive ex6_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4,P5:A0βA1βA2βA3βA4βProp) : Prop β
| ex6_5_intro: βx0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 β P1 x0 x1 x2 x3 x4 β P2 x0 x1 x2 x3 x4 β P3 x0 x1 x2 x3 x4 β P4 x0 x1 x2 x3 x4 β P5 x0 x1 x2 x3 x4 β ex6_5 ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (6, 5)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5).
+interpretation "multiple existental quantifier (6, 5)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5).
-(* multiple inductive existental quantifier (6, 6) *)
+(* multiple existental quantifier (6, 6) *)
inductive ex6_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4,P5:A0βA1βA2βA3βA4βA5βProp) : Prop β
| ex6_6_intro: βx0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 β P1 x0 x1 x2 x3 x4 x5 β P2 x0 x1 x2 x3 x4 x5 β P3 x0 x1 x2 x3 x4 x5 β P4 x0 x1 x2 x3 x4 x5 β P5 x0 x1 x2 x3 x4 x5 β ex6_6 ? ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (6, 6)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
+interpretation "multiple existental quantifier (6, 6)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
-(* multiple inductive existental quantifier (6, 7) *)
+(* multiple existental quantifier (6, 7) *)
inductive ex6_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5:A0βA1βA2βA3βA4βA5βA6βProp) : Prop β
| ex6_7_intro: βx0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 β P1 x0 x1 x2 x3 x4 x5 x6 β P2 x0 x1 x2 x3 x4 x5 x6 β P3 x0 x1 x2 x3 x4 x5 x6 β P4 x0 x1 x2 x3 x4 x5 x6 β P5 x0 x1 x2 x3 x4 x5 x6 β ex6_7 ? ? ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (6, 7)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
+interpretation "multiple existental quantifier (6, 7)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
-(* multiple inductive existental quantifier (7, 3) *)
+(* multiple existental quantifier (7, 3) *)
inductive ex7_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0βA1βA2βProp) : Prop β
| ex7_3_intro: βx0,x1,x2. P0 x0 x1 x2 β P1 x0 x1 x2 β P2 x0 x1 x2 β P3 x0 x1 x2 β P4 x0 x1 x2 β P5 x0 x1 x2 β P6 x0 x1 x2 β ex7_3 ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (7, 3)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_3 ? ? ? P0 P1 P2 P3 P4 P5 P6).
+interpretation "multiple existental quantifier (7, 3)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_3 ? ? ? P0 P1 P2 P3 P4 P5 P6).
-(* multiple inductive existental quantifier (7, 4) *)
+(* multiple existental quantifier (7, 4) *)
inductive ex7_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0βA1βA2βA3βProp) : Prop β
| ex7_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β P3 x0 x1 x2 x3 β P4 x0 x1 x2 x3 β P5 x0 x1 x2 x3 β P6 x0 x1 x2 x3 β ex7_4 ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (7, 4)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
+interpretation "multiple existental quantifier (7, 4)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
-(* multiple inductive existental quantifier (7, 7) *)
+(* multiple existental quantifier (7, 7) *)
inductive ex7_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0βA1βA2βA3βA4βA5βA6βProp) : Prop β
| ex7_7_intro: βx0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 β P1 x0 x1 x2 x3 x4 x5 x6 β P2 x0 x1 x2 x3 x4 x5 x6 β P3 x0 x1 x2 x3 x4 x5 x6 β P4 x0 x1 x2 x3 x4 x5 x6 β P5 x0 x1 x2 x3 x4 x5 x6 β P6 x0 x1 x2 x3 x4 x5 x6 β ex7_7 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (7, 7)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
+interpretation "multiple existental quantifier (7, 7)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
-(* multiple inductive existental quantifier (8, 4) *)
+(* multiple existental quantifier (8, 4) *)
inductive ex8_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5,P6,P7:A0βA1βA2βA3βProp) : Prop β
| ex8_4_intro: βx0,x1,x2,x3. P0 x0 x1 x2 x3 β P1 x0 x1 x2 x3 β P2 x0 x1 x2 x3 β P3 x0 x1 x2 x3 β P4 x0 x1 x2 x3 β P5 x0 x1 x2 x3 β P6 x0 x1 x2 x3 β P7 x0 x1 x2 x3 β ex8_4 ? ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (8, 4)" 'Ex P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
+interpretation "multiple existental quantifier (8, 4)" 'Ex P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
-(* multiple inductive existental quantifier (8, 5) *)
+(* multiple existental quantifier (8, 5) *)
inductive ex8_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4,P5,P6,P7:A0βA1βA2βA3βA4βProp) : Prop β
| ex8_5_intro: βx0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 β P1 x0 x1 x2 x3 x4 β P2 x0 x1 x2 x3 x4 β P3 x0 x1 x2 x3 x4 β P4 x0 x1 x2 x3 x4 β P5 x0 x1 x2 x3 x4 β P6 x0 x1 x2 x3 x4 β P7 x0 x1 x2 x3 x4 β ex8_5 ? ? ? ? ? ? ? ? ? ? ? ? ?
.
-interpretation "multiple inductive existental quantifier (8, 5)" 'Ex P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
+interpretation "multiple existental quantifier (8, 5)" 'Ex P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
(* multiple disjunction connective (3) *)