include "basics/star.ma".
include "turing/mono.ma".
+(* The following machine implements a while-loop over a body machine $M$.
+We just need to extend $M$ adding a single transition leading back from a
+distinguished final state $q$ to the initial state. *)
+
definition while_trans ≝ λsig. λM : TM sig. λq:states sig M. λp.
let 〈s,a〉 ≝ p in
if s == q then 〈start ? M, None ?〉
(while_trans sig M qacc)
(start sig M)
(λs.halt sig M s ∧ ¬ s==qacc).
-
-(* axiom daemon : ∀X:Prop.X. *)
lemma while_trans_false : ∀sig,M,q,p.
\fst p ≠ q → trans sig (whileTM sig M q) p = trans sig M p.
]
qed.
-axiom tech1: ∀A.∀R1,R2:relation A.
+lemma tech1: ∀A.∀R1,R2:relation A.
∀a,b. (R1 ∘ ((star ? R1) ∘ R2)) a b → ((star ? R1) ∘ R2) a b.
-
+#A #R1 #R2 #a #b #H lapply (sub_assoc_l ?????? H) @sub_comp_l -a -b
+#a #b * #c * /2/
+qed.
+
lemma halt_while_acc :
∀sig,M,acc.halt sig (whileTM sig M acc) acc = false.
-#sig #M #acc normalize >(\b ?) //
-cases (halt sig M acc) %
+#sig #M #acc normalize >(\b ?) // cases (halt sig M acc) %
qed.
lemma halt_while_not_acc :
∀sig,M,acc,s.s == acc = false → halt sig (whileTM sig M acc) s = halt sig M s.
-#sig #M #acc #s #neqs normalize >neqs
-cases (halt sig M s) %
+#sig #M #acc #s #neqs normalize >neqs cases (halt sig M s) %
qed.
lemma step_while_acc :
#sig #M #acc * #s #t #Hs normalize >(\b Hs) %
qed.
-lemma loop_p_true :
- ∀A,k,f,p,a.p a = true → loop A (S k) f p a = Some ? a.
-#A #k #f #p #a #Ha normalize >Ha %
-qed.
-
theorem sem_while: ∀sig,M,acc,Rtrue,Rfalse.
halt sig M acc = true →
- accRealize sig M acc Rtrue Rfalse →
- WRealize sig (whileTM sig M acc) ((star ? Rtrue) ∘ Rfalse).
+ M ⊨ [acc: Rtrue,Rfalse] →
+ whileTM sig M acc ⊫ (star ? Rtrue) ∘ Rfalse.
#sig #M #acc #Rtrue #Rfalse #Hacctrue #HaccR #t #i
generalize in match t;
@(nat_elim1 … i) #m #Hind #intape #outc #Hloop
theorem terminate_while: ∀sig,M,acc,Rtrue,Rfalse,t.
halt sig M acc = true →
- accRealize sig M acc Rtrue Rfalse →
- WF ? (inv … Rtrue) t → Terminate sig (whileTM sig M acc) t.
+ M ⊨ [acc: Rtrue,Rfalse] →
+ WF ? (inv … Rtrue) t → whileTM sig M acc ↓ t.
#sig #M #acc #Rtrue #Rfalse #t #Hacctrue #HM #HWF elim HWF
#t1 #H #Hind cases (HM … t1) #i * #outc * * #Hloop
#Htrue #Hfalse cases (true_or_false (cstate … outc == acc)) #Hcase
]
]
qed.
-
-(*
-axiom terminate_while: ∀sig,M,acc,Rtrue,Rfalse,t.
- halt sig M acc = true →
- accRealize sig M acc Rtrue Rfalse →
- ∃t1. Rfalse t t1 → Terminate sig (whileTM sig M acc) t.
-*)
-
-(* (*
-
-(* We do not distinuish an input tape *)
-
-record TM (sig:FinSet): Type[1] ≝
-{ states : FinSet;
- trans : states × (option sig) → states × (option (sig × move));
- start: states;
- halt : states → bool
-}.
-
-record config (sig:FinSet) (M:TM sig): Type[0] ≝
-{ cstate : states sig M;
- ctape: tape sig
-}.
-
-definition option_hd ≝ λA.λl:list A.
- match l with
- [nil ⇒ None ?
- |cons a _ ⇒ Some ? a
- ].
-
-definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move).
- match m with
- [ None ⇒ t
- | Some m1 ⇒
- match \snd m1 with
- [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t))
- | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t))
- ]
- ].
-
-definition step ≝ λsig.λM:TM sig.λc:config sig M.
- let current_char ≝ option_hd ? (right ? (ctape ?? c)) in
- let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in
- mk_config ?? news (tape_move sig (ctape ?? c) mv).
-
-let rec loop (A:Type[0]) n (f:A→A) p a on n ≝
- match n with
- [ O ⇒ None ?
- | S m ⇒ if p a then (Some ? a) else loop A m f p (f a)
- ].
-
-lemma loop_incr : ∀A,f,p,k1,k2,a1,a2.
- loop A k1 f p a1 = Some ? a2 →
- loop A (k2+k1) f p a1 = Some ? a2.
-#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1
-[normalize #a0 #Hfalse destruct
-|#k1' #IH #a0 <plus_n_Sm whd in ⊢ (??%? → ??%?);
- cases (true_or_false (p a0)) #Hpa0 >Hpa0 whd in ⊢ (??%? → ??%?); // @IH
-]
-qed.
-
-lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) →
- ∀k1,k2,a1,a2,a3,a4.
- loop A k1 f p a1 = Some ? a2 →
- f a2 = a3 → q a2 = false →
- loop A k2 f q a3 = Some ? a4 →
- loop A (k1+k2) f q a1 = Some ? a4.
-#Sig #f #p #q #Hpq #k1 elim k1
- [normalize #k2 #a1 #a2 #a3 #a4 #H destruct
- |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?);
- cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?);
- [#eqa1a2 destruct #eqa2a3 #Hqa2 #H
- whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr
- whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H
- |normalize >(Hpq … pa1) normalize
- #H1 #H2 #H3 @(Hind … H2) //
- ]
- ]
-qed.
-
-(*
-lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) →
- ∀k1,k2,a1,a2,a3.
- loop A k1 f p a1 = Some ? a2 →
- loop A k2 f q a2 = Some ? a3 →
- loop A (k1+k2) f q a1 = Some ? a3.
-#Sig #f #p #q #Hpq #k1 elim k1
- [normalize #k2 #a1 #a2 #a3 #H destruct
- |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?);
- cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?);
- [#eqa1a2 destruct #H @loop_incr //
- |normalize >(Hpq … pa1) normalize
- #H1 #H2 @(Hind … H2) //
- ]
- ]
-qed.
-*)
-
-definition initc ≝ λsig.λM:TM sig.λt.
- mk_config sig M (start sig M) t.
-
-definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig).
-∀t.∃i.∃outc.
- loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧
- R t (ctape ?? outc).
-
-(* Compositions *)
-
-definition seq_trans ≝ λsig. λM1,M2 : TM sig.
-λp. let 〈s,a〉 ≝ p in
- match s with
- [ inl s1 ⇒
- if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉
- else
- let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in
- 〈inl … news1,m〉
- | inr s2 ⇒
- let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in
- 〈inr … news2,m〉
- ].
-
-definition seq ≝ λsig. λM1,M2 : TM sig.
- mk_TM sig
- (FinSum (states sig M1) (states sig M2))
- (seq_trans sig M1 M2)
- (inl … (start sig M1))
- (λs.match s with
- [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]).
-
-definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2.
- ∃am.R1 a1 am ∧ R2 am a2.
-
-(*
-definition injectRl ≝ λsig.λM1.λM2.λR.
- λc1,c2. ∃c11,c12.
- inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧
- inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧
- ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧
- ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧
- R c11 c12.
-
-definition injectRr ≝ λsig.λM1.λM2.λR.
- λc1,c2. ∃c21,c22.
- inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧
- inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧
- ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧
- ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧
- R c21 c22.
-
-definition Rlink ≝ λsig.λM1,M2.λc1,c2.
- ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧
- cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧
- cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *)
-
-interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2).
-
-definition lift_confL ≝
- λsig,M1,M2,c.match c with
- [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ].
-definition lift_confR ≝
- λsig,M1,M2,c.match c with
- [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ].
-
-definition halt_liftL ≝
- λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2).
- match s with
- [ inl s1 ⇒ halt sig M1 s1
- | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *)
-
-definition halt_liftR ≝
- λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2).
- match s with
- [ inl _ ⇒ false
- | inr s2 ⇒ halt sig M2 s2 ].
-
-lemma p_halt_liftL : ∀sig,M1,M2,c.
- halt sig M1 (cstate … c) =
- halt_liftL sig M1 M2 (cstate … (lift_confL … c)).
-#sig #M1 #M2 #c cases c #s #t %
-qed.
-
-lemma trans_liftL : ∀sig,M1,M2,s,a,news,move.
- halt ? M1 s = false →
- trans sig M1 〈s,a〉 = 〈news,move〉 →
- trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉.
-#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move
-#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans %
-qed.
-
-lemma config_eq :
- ∀sig,M,c1,c2.
- cstate sig M c1 = cstate sig M c2 →
- ctape sig M c1 = ctape sig M c2 → c1 = c2.
-#sig #M1 * #s1 #t1 * #s2 #t2 //
-qed.
-
-lemma step_lift_confL : ∀sig,M1,M2,c0.
- halt ? M1 (cstate ?? c0) = false →
- step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) =
- lift_confL sig M1 M2 (step sig M1 c0).
-#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt
-#rs #Hhalt
-whd in ⊢ (???(????%));whd in ⊢ (???%);
-lapply (refl ? (trans ?? 〈s,option_hd sig rs〉))
-cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %);
-#s0 #m0 #Heq whd in ⊢ (???%);
-whd in ⊢ (??(???%)?); whd in ⊢ (??%?);
->(trans_liftL … Heq)
-[% | //]
-qed.
-
-lemma loop_liftL : ∀sig,k,M1,M2,c1,c2.
- loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 →
- loop ? k (step sig (seq sig M1 M2))
- (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) =
- Some ? (lift_confL … c2).
-#sig #k #M1 #M2 #c1 #c2 generalize in match c1;
-elim k
-[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse)
-|#k0 #IH #c0 whd in ⊢ (??%? → ??%?);
- lapply (refl ? (halt ?? (cstate sig M1 c0)))
- cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0
- [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true)
- [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) %
- | // ]
- | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false)
- [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f
- @step_lift_confL //
- | // ]
-qed.
-
-STOP!
-
-lemma loop_liftR : ∀sig,k,M1,M2,c1,c2.
- loop ? k (step sig M2) (λc.halt sig M2 (cstate ?? c)) c1 = Some ? c2 →
- loop ? k (step sig (seq sig M1 M2))
- (λc.halt sig (seq sig M1 M2) (cstate ?? c)) (lift_confR … c1) =
- Some ? (lift_confR … c2).
-#sig #k #M1 #M2 #c1 #c2
-elim k
-[normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse)
-|#k0 #IH whd in ⊢ (??%? → ??%?);
- lapply (refl ? (halt ?? (cstate sig M2 c1)))
- cases (halt ?? (cstate sig M2 c1)) in ⊢ (???% → ?); #Hc0 >Hc0
- [ >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = true)
- [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2)
- | (* ... *) ]
- | >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = false)
- [whd in ⊢ (??%? → ??%?); #Hc2 <IH
- [@eq_f (* @step_lift_confR // *)
- |
- | // ]
-qed. *)
-
-lemma loop_Some :
- ∀A,k,f,p,a,b.loop A k f p a = Some ? b → p b = true.
-#A #k #f #p #a #b elim k
-[normalize #Hfalse destruct
-|#k0 #IH whd in ⊢ (??%? → ?); cases (p a)
- [ normalize #H1 destruct
-
-lemma trans_liftL_true : ∀sig,M1,M2,s,a.
- halt ? M1 s = true →
- trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉.
-#sig #M1 #M2 #s #a
-#Hhalt whd in ⊢ (??%?); >Hhalt %
-qed.
-
-lemma eq_ctape_lift_conf_L : ∀sig,M1,M2,outc.
- ctape sig (seq sig M1 M2) (lift_confL … outc) = ctape … outc.
-#sig #M1 #M2 #outc cases outc #s #t %
-qed.
-
-lemma eq_ctape_lift_conf_R : ∀sig,M1,M2,outc.
- ctape sig (seq sig M1 M2) (lift_confR … outc) = ctape … outc.
-#sig #M1 #M2 #outc cases outc #s #t %
-qed.
-
-theorem sem_seq: ∀sig,M1,M2,R1,R2.
- Realize sig M1 R1 → Realize sig M2 R2 →
- Realize sig (seq sig M1 M2) (R1 ∘ R2).
-#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t
-cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1
-cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2
-@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2))
-%
-[@(loop_split ??????????? (loop_liftL … Hloop1))
- [* *
- [ #sl #tl whd in ⊢ (??%? → ?); #Hl %
- | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ]
- ||4:cases outc1 #s1 #t1 %
- |5:@(loop_liftR … Hloop2)
- |whd in ⊢ (??(???%)?);whd in ⊢ (??%?);
- generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10
- >(trans_liftL_true sig M1 M2 ??)
- [ whd in ⊢ (??%?); whd in ⊢ (???%);
- @config_eq //
- | @(loop_Some ?????? Hloop10) ]
- ]
-| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1)))
- % //
-]
-qed.
-
-(* boolean machines: machines with two distinguished halting states *)
-
-
-
-(* old stuff *)
-definition empty_tapes ≝ λsig.λn.
-mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?.
-elim n // normalize //
-qed.
-
-definition init ≝ λsig.λM:TM sig.λi:(list sig).
- mk_config ??
- (start sig M)
- (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M)))
- [ ].
-
-definition stop ≝ λsig.λM:TM sig.λc:config sig M.
- halt sig M (state sig M c).
-
-let rec loop (A:Type[0]) n (f:A→A) p a on n ≝
- match n with
- [ O ⇒ None ?
- | S m ⇒ if p a then (Some ? a) else loop A m f p (f a)
- ].
-
-(* Compute ? M f states that f is computed by M *)
-definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig).
-∀l.∃i.∃c.
- loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧
- out ?? c = f l.
-
-(* for decision problems, we accept a string if on termination
-output is not empty *)
-
-definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool.
-∀l.∃i.∃c.
- loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧
- (isnilb ? (out ?? c) = false).
-
-(* alternative approach.
-We define the notion of computation. The notion must be constructive,
-since we want to define functions over it, like lenght and size
-
-Perche' serve Type[2] se sposto a e b a destra? *)
-
-inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝
- mk_move: p a = false → b = f a → cmove A f p a b.
-
-inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝
-| empty : ∀a. cstar A M a a
-| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c.
-
-definition computation ≝ λsig.λM:TM sig.
- cstar ? (cmove ? (step sig M) (stop sig M)).
-
-definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig).
- ∀l.∃c.computation sig M (init sig M l) c →
- (stop sig M c = true) ∧ out ?? c = f l.
-
-definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool.
- ∀l.∃c.computation sig M (init sig M l) c →
- (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false).
-*)
\ No newline at end of file