--- /dev/null
+(* Copyright (C) 2004, HELM Team.
+ *
+ * This file is part of HELM, an Hypertextual, Electronic
+ * Library of Mathematics, developed at the Computer Science
+ * Department, University of Bologna, Italy.
+ *
+ * HELM is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * HELM is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HELM; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ *
+ * For details, see the HELM World-Wide-Web page,
+ * http://cs.unibo.it/helm/.
+ *)
+
+let debug_print = fun _ -> ()
+
+let rec higher_name arity =
+ function
+ Cic.Sort Cic.Prop
+ | Cic.Sort Cic.CProp ->
+ if arity = 0 then "A" (* propositions *)
+ else if arity = 1 then "P" (* predicates *)
+ else "R" (*relations *)
+ | Cic.Sort Cic.Set
+ -> if arity = 0 then "S" else "F"
+ | Cic.Sort (Cic.Type _ ) ->
+ if arity = 0 then "T" else "F"
+ | Cic.Prod (_,_,t) -> higher_name (arity+1) t
+ | _ -> "f"
+
+let get_initial s =
+ if String.length s = 0 then "_"
+ else
+ let head = String.sub s 0 1 in
+ String.lowercase head
+
+(* only used when the sort is not Prop or CProp *)
+let rec guess_a_name context ty =
+ match ty with
+ Cic.Rel n ->
+ (match List.nth context (n-1) with
+ None -> assert false
+ | Some (Cic.Anonymous,_) -> assert false
+ | Some (Cic.Name s,_) -> get_initial s)
+ | Cic.Var (uri,_) -> get_initial (UriManager.name_of_uri uri)
+ | Cic.Sort _ -> higher_name 0 ty
+ | Cic.Implicit _ -> assert false
+ | Cic.Cast (t1,t2) -> guess_a_name context t1
+ | Cic.Prod (na_,_,t) -> higher_name 1 t
+ | Cic.Lambda _ -> assert false
+ | Cic.LetIn (_,s,t) -> guess_a_name context (CicSubstitution.subst s t)
+ | Cic.Appl [] -> assert false
+ | Cic.Appl (he::_) -> guess_a_name context he
+ | Cic.Const (uri,_)
+ | Cic.MutInd (uri,_,_)
+ | Cic.MutConstruct (uri,_,_,_) -> get_initial (UriManager.name_of_uri uri)
+ | _ -> "x"
+
+(* mk_fresh_name context name typ *)
+(* returns an identifier which is fresh in the context *)
+(* and that resembles [name] as much as possible. *)
+(* [typ] will be the type of the variable *)
+let mk_fresh_name ~subst metasenv context name ~typ =
+ let module C = Cic in
+ let basename =
+ match name with
+ C.Anonymous ->
+ (try
+ let ty,_ =
+ CicTypeChecker.type_of_aux' ~subst metasenv context typ
+ CicUniv.empty_ugraph in
+ (match ty with
+ C.Sort C.Prop
+ | C.Sort C.CProp -> "H"
+ | _ -> guess_a_name context typ
+ )
+ with CicTypeChecker.TypeCheckerFailure _ -> "H"
+ )
+ | C.Name name ->
+ Str.global_replace (Str.regexp "[0-9]*$") "" name
+ in
+ let already_used name =
+ List.exists (function Some (n,_) -> n=name | _ -> false) context
+ in
+ if name <> C.Anonymous && not (already_used name) then
+ name
+ else if not (already_used (C.Name basename)) then
+ C.Name basename
+ else
+ let rec try_next n =
+ let name' = C.Name (basename ^ string_of_int n) in
+ if already_used name' then
+ try_next (n+1)
+ else
+ name'
+ in
+ try_next 1
+;;
+
+(* let mk_fresh_names ~subst metasenv context t *)
+let rec mk_fresh_names ~subst metasenv context t =
+ match t with
+ Cic.Rel _ -> t
+ | Cic.Var (uri,exp_named_subst) ->
+ let ens =
+ List.map
+ (fun (uri,t) ->
+ (uri,mk_fresh_names ~subst metasenv context t)) exp_named_subst in
+ Cic.Var (uri,ens)
+ | Cic.Meta (i,l) ->
+ let l' =
+ List.map
+ (fun t ->
+ match t with
+ None -> None
+ | Some t -> Some (mk_fresh_names ~subst metasenv context t)) l in
+ Cic.Meta(i,l')
+ | Cic.Sort _
+ | Cic.Implicit _ -> t
+ | Cic.Cast (te,ty) ->
+ let te' = mk_fresh_names ~subst metasenv context te in
+ let ty' = mk_fresh_names ~subst metasenv context ty in
+ Cic.Cast (te', ty')
+ | Cic.Prod (n,s,t) ->
+ let s' = mk_fresh_names ~subst metasenv context s in
+ let n' =
+ match n with
+ Cic.Anonymous -> Cic.Anonymous
+ | Cic.Name "matita_dummy" ->
+ mk_fresh_name ~subst metasenv context Cic.Anonymous ~typ:s'
+ | _ -> n in
+ let t' = mk_fresh_names ~subst metasenv (Some(n',Cic.Decl s')::context) t in
+ Cic.Prod (n',s',t')
+ | Cic.Lambda (n,s,t) ->
+ let s' = mk_fresh_names ~subst metasenv context s in
+ let n' =
+ match n with
+ Cic.Anonymous -> Cic.Anonymous
+ | Cic.Name "matita_dummy" ->
+ mk_fresh_name ~subst metasenv context Cic.Anonymous ~typ:s'
+ | _ -> n in
+ let t' = mk_fresh_names ~subst metasenv (Some(n',Cic.Decl s')::context) t in
+ Cic.Lambda (n',s',t')
+ | Cic.LetIn (n,s,t) ->
+ let s' = mk_fresh_names ~subst metasenv context s in
+ let n' =
+ match n with
+ Cic.Anonymous -> Cic.Anonymous
+ | Cic.Name "matita_dummy" ->
+ mk_fresh_name ~subst metasenv context Cic.Anonymous ~typ:s'
+ | _ -> n in
+ let t' = mk_fresh_names ~subst metasenv (Some(n',Cic.Def (s',None))::context) t in
+ Cic.LetIn (n',s',t')
+ | Cic.Appl l ->
+ Cic.Appl (List.map (mk_fresh_names ~subst metasenv context) l)
+ | Cic.Const (uri,exp_named_subst) ->
+ let ens =
+ List.map
+ (fun (uri,t) ->
+ (uri,mk_fresh_names ~subst metasenv context t)) exp_named_subst in
+ Cic.Const(uri,ens)
+ | Cic.MutInd (uri,tyno,exp_named_subst) ->
+ let ens =
+ List.map
+ (fun (uri,t) ->
+ (uri,mk_fresh_names ~subst metasenv context t)) exp_named_subst in
+ Cic.MutInd (uri,tyno,ens)
+ | Cic.MutConstruct (uri,tyno,consno,exp_named_subst) ->
+ let ens =
+ List.map
+ (fun (uri,t) ->
+ (uri,mk_fresh_names ~subst metasenv context t)) exp_named_subst in
+ Cic.MutConstruct (uri,tyno,consno, ens)
+ | Cic.MutCase (sp,i,outty,t,pl) ->
+ let outty' = mk_fresh_names ~subst metasenv context outty in
+ let t' = mk_fresh_names ~subst metasenv context t in
+ let pl' = List.map (mk_fresh_names ~subst metasenv context) pl in
+ Cic.MutCase (sp, i, outty', t', pl')
+ | Cic.Fix (i, fl) ->
+ let tys = List.map
+ (fun (n,_,ty,_) ->
+ Some (Cic.Name n,(Cic.Decl ty))) fl in
+ let fl' = List.map
+ (fun (n,i,ty,bo) ->
+ let ty' = mk_fresh_names ~subst metasenv context ty in
+ let bo' = mk_fresh_names ~subst metasenv (tys@context) bo in
+ (n,i,ty',bo')) fl in
+ Cic.Fix (i, fl')
+ | Cic.CoFix (i, fl) ->
+ let tys = List.map
+ (fun (n,_,ty) ->
+ Some (Cic.Name n,(Cic.Decl ty))) fl in
+ let fl' = List.map
+ (fun (n,ty,bo) ->
+ let ty' = mk_fresh_names ~subst metasenv context ty in
+ let bo' = mk_fresh_names ~subst metasenv (tys@context) bo in
+ (n,ty',bo')) fl in
+ Cic.CoFix (i, fl')
+;;
+
+(* clean_dummy_dependent_types term *)
+(* returns a copy of [term] where every dummy dependent product *)
+(* have been replaced with a non-dependent product and where *)
+(* dummy let-ins have been removed. *)
+let clean_dummy_dependent_types t =
+ let module C = Cic in
+ let rec aux k =
+ function
+ C.Rel m as t -> t,[k - m]
+ | C.Var (uri,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.Var (uri,exp_named_subst'),rels
+ | C.Meta (i,l) ->
+ let l',rels =
+ List.fold_right
+ (fun t (l,rels) ->
+ let t',rels' =
+ match t with
+ None -> None,[]
+ | Some t ->
+ let t',rels' = aux k t in
+ Some t', rels'
+ in
+ t'::l, rels' @ rels
+ ) l ([],[])
+ in
+ C.Meta(i,l'),rels
+ | C.Sort _ as t -> t,[]
+ | C.Implicit _ as t -> t,[]
+ | C.Cast (te,ty) ->
+ let te',rels1 = aux k te in
+ let ty',rels2 = aux k ty in
+ C.Cast (te', ty'), rels1@rels2
+ | C.Prod (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ let n' =
+ match n with
+ C.Anonymous ->
+ if List.mem k rels2 then
+(
+ debug_print "If this happens often, we can do something about it (i.e. we can generate a new fresh name; problem: we need the metasenv and context ;-(. Alternative solution: mk_implicit does not generate entries for the elements in the context that have no name" ;
+ C.Anonymous
+)
+ else
+ C.Anonymous
+ | C.Name _ as n ->
+ if List.mem k rels2 then n else C.Anonymous
+ in
+ C.Prod (n', s', t'), rels1@rels2
+ | C.Lambda (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ C.Lambda (n, s', t'), rels1@rels2
+ | C.LetIn (n,s,t) ->
+ let s',rels1 = aux k s in
+ let t',rels2 = aux (k+1) t in
+ let rels = rels1 @ rels2 in
+ if List.mem k rels2 then
+ C.LetIn (n, s', t'), rels
+ else
+ (* (C.Rel 1) is just a dummy term; any term would fit *)
+ CicSubstitution.subst (C.Rel 1) t', rels
+ | C.Appl l ->
+ let l',rels =
+ List.fold_right
+ (fun t (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ t'::exp_named_subst, rels' @ rels
+ ) l ([],[])
+ in
+ C.Appl l', rels
+ | C.Const (uri,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.Const (uri,exp_named_subst'),rels
+ | C.MutInd (uri,tyno,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.MutInd (uri,tyno,exp_named_subst'),rels
+ | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
+ let exp_named_subst',rels =
+ List.fold_right
+ (fun (uri,t) (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ (uri,t')::exp_named_subst, rels' @ rels
+ ) exp_named_subst ([],[])
+ in
+ C.MutConstruct (uri,tyno,consno,exp_named_subst'),rels
+ | C.MutCase (sp,i,outty,t,pl) ->
+ let outty',rels1 = aux k outty in
+ let t',rels2 = aux k t in
+ let pl',rels3 =
+ List.fold_right
+ (fun t (exp_named_subst,rels) ->
+ let t',rels' = aux k t in
+ t'::exp_named_subst, rels' @ rels
+ ) pl ([],[])
+ in
+ C.MutCase (sp, i, outty', t', pl'), rels1 @ rels2 @rels3
+ | C.Fix (i, fl) ->
+ let len = List.length fl in
+ let fl',rels =
+ List.fold_right
+ (fun (name,i,ty,bo) (fl,rels) ->
+ let ty',rels1 = aux k ty in
+ let bo',rels2 = aux (k + len) bo in
+ (name,i,ty',bo')::fl, rels1 @ rels2 @ rels
+ ) fl ([],[])
+ in
+ C.Fix (i, fl'),rels
+ | C.CoFix (i, fl) ->
+ let len = List.length fl in
+ let fl',rels =
+ List.fold_right
+ (fun (name,ty,bo) (fl,rels) ->
+ let ty',rels1 = aux k ty in
+ let bo',rels2 = aux (k + len) bo in
+ (name,ty',bo')::fl, rels1 @ rels2 @ rels
+ ) fl ([],[])
+ in
+ C.CoFix (i, fl'),rels
+ in
+ fst (aux 0 t)
+;;