|2: intros (x y z); apply Or_symmetric; apply cTf; assumption;]
qed.
-(*
-
definition reverse_pordered_set: pordered_set → pordered_set.
intros (p); apply (mk_pordered_set (reverse_excedence p));
-generalize in match (reverse_excedence p); intros (E); cases E (T f cRf cTf);
-simplify; apply mk_is_porder_relation; unfold; intros;
-[apply le_reflexive|apply (le_transitive ???? H H1);|apply (le_antisymmetric ??? H H1)]
+generalize in match (reverse_excedence p); intros (E);
+apply mk_is_porder_relation;
+[apply le_reflexive|apply le_transitive|apply le_antisymmetric]
qed.
lemma is_lower_bound_reverse_is_upper_bound:
apply is_upper_bound_reverse_is_lower_bound; assumption;]
qed.
-(*
-record cotransitively_ordered_set: Type :=
- { cos_ordered_set :> ordered_set;
- cos_cotransitive: cotransitive ? (os_le cos_ordered_set)
- }.
-*)
-
-*)
-
definition total_order_property : ∀E:excedence. Type ≝
- λE:excedence. ∀a,b:E. a ≰ b → a < b.
+ λE:excedence. ∀a,b:E. a ≰ b → b < a.
record tordered_set : Type ≝ {
tos_poset:> pordered_set;