nrewrite > (cupA…); //;##]
nqed.
+nlemma sub_dot_star :
+ ∀S.∀X:word S → Prop.∀b. (X - ϵ b) · X^* ∪ {[]} = X^*.
+#S X b; napply extP; #w; @;
+##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //]
+ *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj;
+ @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //;
+ @; //; napply (subW … sube);
+##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //]
+ #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *;
+ ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2;
+ @; ncases b in H1; #H1;
+ ##[##2: nrewrite > (sub0…); @w'; @(w1@w2);
+ nrewrite > (associative_append ? w' w1 w2);
+ nrewrite > defwl'; @; ##[@;//] @(wl'); @; //;
+ ##| ncases w' in Pw';
+ ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //;
+ ##| #x xs Px; @(x::xs); @(w1@w2);
+ nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct]
+ @wl'; @; //; ##] ##]
+ ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl');
+ nrewrite < (wlnil); nrewrite > (append_nil…); ncases b;
+ ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]);
+ nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct]
+ @[]; @; //;
+ ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //]
+ @; //; @; //; @; *;##]##]##]
+nqed.
+
(* theorem 16: 1 *)
alias symbol "pc" (instance 13) = "cat lang".
alias symbol "in_pl" (instance 23) = "in_pl".
##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##]
nrewrite > (cup_dotD…); nrewrite > (cupA…);
nrewrite > (?: ((?·?)∪{[]} = 𝐋 .|e^*|)); //;
- nchange in ⊢ (???%) with ((𝐋. |e|)^* ); napply extP; #w; @;
- ##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //]
- *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj;
- @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //;
- @; //; napply (subW … sube);
- ##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl;
- ##[ #_; @2; //;
- ##| #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *;
- ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2;
- @; ncases b' in H1; #H1;
- ##[##2: nrewrite > (sub0…); @w'; @(w1@w2);
- nrewrite > (associative_append ? w' w1 w2);
- nrewrite > defwl'; @; ##[@;//] @(wl'); @; //;
- ##| ncases w' in Pw';
- ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //;
- ##| #x xs Px; @(x::xs); @(w1@w2);
- nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct]
- @wl'; @; //; ##] ##]
- ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl');
- nrewrite < (wlnil); nrewrite > (append_nil…); ncases b';
- ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]);
- nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct]
- @[]; @; //;
- ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //]
- @; //; @; //; @; *;##]##]##]##]##]
-nqed.
+ nchange in match (𝐋 .|e^*|) with ((𝐋. |e|)^* ); napply sub_dot_star;##]
+ nqed.
(* theorem 16: 3 *)
nlemma odot_dot:
nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*.
#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed.
-naxiom Admit : False.
-
-nlemma key_id : ∀S.∀e:pitem S. 𝐋\p e · 𝐋 .|e|^* ∪ {[]} = 𝐋\p e · 𝐋 .|e|^* ∪ 𝐋 .|e|^*.
-#S e; napply extP; #w; @;##[##2:*]
-##[*; #w1; *; #w2; *; *; #defw Hw1 Hw2;@; @w1; @w2; /3/;
-##|*; #wl; *; #H; nrewrite < H;
-(*
- ngeneralize in match e;
- nelim wl;##[#e;#_;@2;//] #x xs IH e;*; #Hx Hxs; ncases (IH Hxs);
- ##[##2: #H; nnormalize; nrewrite < H; nrewrite > (append_nil…);
-
- ncases wl; ##[#_;@2; //] #x xs; *; #Hx Hxs; @; @x; @(flatten ? xs); @;
- ##[@;//;##|@xs; @; //]
- ngeneralize in match Hx; ngeneralize in match x; nelim e; nnormalize; //;
- ##[#e1 e2 IH1 IH2 x; *; #w1; *; #w2; *; *; #defx Hw1 Hw2;
- @; @w1; @w2; /4/ by conj;
- ##|#e1 e2 IH1 IH2 y;*; #; ##[@|@2] /2/;
- ##|#e IH y; *; #wl; *; #delwl Hw2; nrewrite < delwl;
- nelim wl in Hw2; ##[#_;@[];@[];@;//;
-*)
- ncases Admit;
-##|*;##[##2: #H; nrewrite < H; @2; //] *; #w1; *; #w2; *; *; #defw Hw1 Hw2;
- @; @w1; @w2; /3/;##]
+nlemma rcanc_sing : ∀S.∀A,C:word S → Prop.∀b:word S .
+ ¬ (A b) → A ∪ { (b) } = C → A = C - { (b) }.
+#S A C b nbA defC; nrewrite < defC; napply extP; #w; @;
+##[ #Aw; /3/| *; *; //; #H nH; ncases nH; #abs; nlapply (abs H); *]
nqed.
(* theorem 16: 4 *)
nlemma star_dot: ∀S.∀e:pre S. 𝐋\p (e^⊛) = 𝐋\p e · (𝐋 .|\fst e|)^*.
-#S e; ncases e; #e' b'; ncases b';
-##[ nchange in match (〈e',true〉^⊛) with 〈?,?〉;
- nletin e'' ≝ (\fst (•e'));
+#S p; ncases p; #e b; ncases b;
+##[ nchange in match (〈e,true〉^⊛) with 〈?,?〉;
+ nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e));
nchange in ⊢ (??%?) with (?∪?);
- nchange in ⊢ (??(??%?)?) with (𝐋\p e'' · 𝐋 .|e''|^* );
- nrewrite > (?: 𝐋\p e'' · 𝐋.|e''|^* ∪ {[]} = (𝐋\p e' ∪ 𝐋.|e'|) · 𝐋.|e''|^* ∪ {[]}); ##[##2:
- nrewrite < (bull_cup…); nchange in ⊢ (???(??(??%?)?)) with (?∪?);
- nchange in match e'' with e'';
- ncases (\snd (•e')); ##[##2: nrewrite > (cup0…); //]
- nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…);
- nrewrite > (cupA…); nrewrite > (cup_star_nil…);
- napply key_id;##]
- nrewrite > (cup_dotD…); nrewrite > (cupA…);
- nrewrite > (?: ?·? ∪ {[]} = 𝐋.|e'|^* ); ##[##2:
- nrewrite > (erase_bull…); nrewrite > (dot_star_epsilon…); //]
- nrewrite > (erase_bull…);
+ nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 .|e'|^* );
+ nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 .|e| - ϵ b' )); ##[##2:
+ nlapply (bull_cup ? e); #bc;
+ nchange in match (𝐋\p (•e)) in bc with (?∪?);
+ nchange in match b' in bc with b';
+ ncases b' in bc; ##[##2: nrewrite > (cup0…); nrewrite > (sub0…); //]
+ nrewrite > (cup_sub…); ##[napply rcanc_sing] //;##]
+ nrewrite > (cup_dotD…); nrewrite > (cupA…);nrewrite > (erase_bull…);
+ nrewrite > (sub_dot_star…);
nchange in match (𝐋\p 〈?,?〉) with (?∪?);
- nrewrite > (cup_dotD…);nrewrite > (epsilon_dot…); //;
-##| nwhd in match (〈e',false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?);
+ nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…); //;
+##| nwhd in match (〈e,false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?);
nrewrite > (cup0…);
- nchange in ⊢ (??%?) with (𝐋\p e' · 𝐋 .|e'|^* );
- nrewrite < (cup0 ? (𝐋\p e')); //;##]
+ nchange in ⊢ (??%?) with (𝐋\p e · 𝐋 .|e|^* );
+ nrewrite < (cup0 ? (𝐋\p e)); //;##]
nqed.
-(* corollary 17: non tipa *)
+nlet rec pre_of_re (S : Alpha) (e : re S) on e : pitem S ≝
+ match e with
+ [ z ⇒ pz ?
+ | e ⇒ pe ?
+ | s x ⇒ ps ? x
+ | c e1 e2 ⇒ pc ? (pre_of_re ? e1) (pre_of_re ? e2)
+ | o e1 e2 ⇒ po ? (pre_of_re ? e1) (pre_of_re ? e2)
+ | k e1 ⇒ pk ? (pre_of_re ? e1)].
+
+nlemma notFalse : ¬False. @; //; nqed.
+
+nlemma dot0 : ∀S.∀A:word S → Prop. {} · A = {}.
+#S A; nnormalize; napply extP; #w; @; ##[##2: *]
+*; #w1; *; #w2; *; *; //; nqed.
+
+nlemma Lp_pre_of_re : ∀S.∀e:re S. 𝐋\p (pre_of_re ? e) = {}.
+#S e; nelim e; ##[##1,2,3: //]
+##[ #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1 e2))) with (?∪?);
+ nrewrite > H1; nrewrite > H2; nrewrite > (dot0…); nrewrite > (cupID…);//
+##| #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1+e2))) with (?∪?);
+ nrewrite > H1; nrewrite > H2; nrewrite > (cupID…); //
+##| #e1 H1; nchange in match (𝐋\p (pre_of_re S (e1^* ))) with (𝐋\p (pre_of_re ??) · ?);
+ nrewrite > H1; napply dot0; ##]
+nqed.
+
+nlemma erase_pre_of_reK : ∀S.∀e. 𝐋 .|pre_of_re S e| = 𝐋 e.
+#S A; nelim A; //;
+##[ #e1 e2 H1 H2; nchange in match (𝐋 (e1 · e2)) with (𝐋 e1·?);
+ nrewrite < H1; nrewrite < H2; //
+##| #e1 e2 H1 H2; nchange in match (𝐋 (e1 + e2)) with (𝐋 e1 ∪ ?);
+ nrewrite < H1; nrewrite < H2; //
+##| #e1 H1; nchange in match (𝐋 (e1^* )) with ((𝐋 e1)^* );
+ nrewrite < H1; //]
+nqed.
+
+(* corollary 17 *)
+nlemma L_Lp_bull : ∀S.∀e:re S.𝐋 e = 𝐋\p (•pre_of_re ? e).
+#S e; nrewrite > (bull_cup…); nrewrite > (Lp_pre_of_re…);
+nrewrite > (cupC…); nrewrite > (cup0…); nrewrite > (erase_pre_of_reK…); //;
+nqed.
nlemma Pext : ∀S.∀f,g:word S → Prop. f = g → ∀w.f w → g w.
#S f g H; nrewrite > H; //; nqed.